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Multiphysics Simulations

Multiphysics simulations couple different models either in the bulk or across interfaces.

Climate:

Atmospheric simulations combine fluid dynamics with local
“physics” models for chemistry, condensation, . . .

Atmosphere is coupled at interfaces to myriad other
processes (ocean, land ice, . . . ), each using distinct models

Astrophysics/cosmology:

Dark matter modeled using particles that give rise to
large-scale gravitational structures (at right).

Baryonic matter modeled by combining fluid dynamics,
gravity, radiation transport, and reaction networks for
chemical ionization states.

Above: https://e3sm.org.

Below: http://svs.gsfc.nasa.gov.

https://e3sm.org
http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118
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Multiphysics Challenges [Keyes et al., 2013]

Since multiphysics simulations combine multiple physical processes, they can challenge textbook methods:

“Multirate” processes evolve on different time scales but prohibit analytical reformulation.

Stiff components disallow fully explicit methods (c.f., Prof. Seibold’s seminar last week).

Nonlinearity and low differentiability challenge fully implicit methods.

Parallel scalability demands optimal algorithms – while robust/scalable algebraic solvers exist for parts
(e.g., FMM for particles, multigrid for diffusion), none are optimal for the whole.

We may consider a prototypical problem as having m coupled evolutionary processes:

y′(t) = f{1}(t, y) + · · ·+ f{m}(t, y), t ∈ [t0, tf ], y(t0) = y0.

Each component f{k}(t, y):

may act on all of y (in the bulk), or on only a subset of y (within a subdomain),

may evolve on a different characteristic time scale,

may be “stiff” or “nonstiff,” thereby desiring implicit or explicit treatment.

https://doi.org/10.1177/1094342012468181


D.R. Reynolds 6/32

Background MRI Methods MRI Adaptivity Results Conclusions & future work

Implicit-Explicit Additive Runge–Kutta Methods [Ascher et al., 1997; Kennedy & Carpenter, 2003; . . . ]

ImEx-ARK methods allow high-order adaptive time integration for additively-split single rate simulations:

ẏ(t) = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

fE(t, y) contains the nonstiff terms to be treated explicitly,

fI(t, y) contains the stiff terms to be treated implicitly.

Combine two s-stage RK methods; denoting hn = tn+1 − tn, tEn,j = tn + cEj hn, tIn,j = tn + cIjhn:

zi = yn + hn

i−1∑
j=1

aEi,jf
E(tEn,j , zj) + hn

i∑
j=1

aIi,jf
I(tIn,j , zj), i = 1, . . . , s,

yn+1 = yn + hn

s∑
j=1

[
bEj fE(tEn,j , zj) + bIjf

I(tIn,j , zj)
]

(solution)

ỹn+1 = yn + hn

s∑
j=1

[
b̃Ej fE(tEn,j , zj) + b̃Ijf

I(tIn,j , zj)
]

(embedding)

https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(02)00138-1


D.R. Reynolds 7/32

Background MRI Methods MRI Adaptivity Results Conclusions & future work

Solving each stage zi, i = 1, . . . , s [Ascher et al., 1997; Kennedy & Carpenter, 2003; . . . ]

At each stage we must solve a root-finding problem:

0 = Fi(z) :=
[
z − hna

I
i,if

I(tIn,i, z)
]
−

[
yn + hn

i−1∑
j=1

(
aE
i,jf

E(tEn,j , zj) + aI
i,jf

I(tIn,j , zj)
)]

If fI(t, y) = J(t)y (i.e., fI is linear in y) then this is a large-scale linear system for each zi:(
I − hna

I
i,iJ(tn,i)

)
zi = rhsi.

Else this requires an iterative solver (e.g., Newton, accelerated fixed-point, or problem-specific),
that itself may require solution of multiple linear systems.

All operators in fE(t, y) are treated explicitly (do not affect algebraic solver convergence).

ImEx-ARK methods are defined by compatible explicit
{
cE , AE , bE , b̃E

}
and implicit

{
cI , AI , bI , b̃I

}
tables. These are derived in unison to satisfy order conditions, stability, . . .

https://doi.org/10.1016/S0168-9274(97)00056-1
https://doi.org/10.1016/S0168-9274(02)00138-1


D.R. Reynolds 8/32

Background MRI Methods MRI Adaptivity Results Conclusions & future work

Multirate Infinitesimal (MRI) methods [Schlegel et al., 2009; Sandu, 2019; . . . ]

MRI methods provide a rigorous and highly accurate approach to “subcycling” for multirate problems:

ẏ(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fS(t, y) contains the “slow” dynamics, naturally evolved with large steps H.

fF (t, y) contains the “fast” dynamics, that evolves with small steps h ≪ H.

It is generally assumed that fS(t, y) is considerably more costly to evaluate than fF (t, y), and
thus a method which evaluates fS(t, y) infrequently is desirable.

Extremely efficient – fourth order is attainable with only a single traversal of [tn, tn+1].

https://www.sciencedirect.com/science/article/pii/S0377042708004147
https://epubs.siam.org/doi/10.1137/18M1205492
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MRI Algorithm Outline

Denoting yn ≈ y(tn), a single explicit MRI step tn → tn +H proceeds as:

1. Let: z1 := yn

2. For i = 2, ..., s:

a. Solve: v′i(t) = fF (t, vi(t)) + ri(t), for t ∈ [tn,i−1, tn,i] with vi(tn,i−1) := zi−1.

b. Let: zi := vi(tn,i).

3. Solve: ṽ′s(t) = fF (t, ṽs(t)) + r̃s(t), for t ∈ [tn,s−1, tn+1] with ṽs(tn,s−1) := zs−1.

4. Let: yn+1 := zs (solution) and ỹn+1 := ṽs(tn+1) (embedding).

Uniquely defined by: abscissae 0 = c1 ≤ · · · ≤ cs = 1 (tn,i := tn + ciH) and forcing functions ri(t), r̃s(t),

that are linear combinations of
{
fS(tn,j , zj)

}
and propagate information from slow to fast scales.

Implicit versions are possible but require padding for solve-decoupled stages; replace step 2a with a
DIRK-like solve during implicit stages.

The original MIS methods [Schlegel et al., 2009] used constant ri(t) and achieved up to O
(
H3

)
.

Sandu’s MRI-GARK [2019] extended these to O
(
H4

)
via polynomial ri(t), and introduced embeddings.
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Implicit-Explicit MRI Methods

We have extended Sandu’s MRI-GARK methods to support implicit-explicit treatment of the slow scale:

ẏ(t) = fI(t, y) + fE(t, y)︸ ︷︷ ︸
fS(t,y)

+fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

ImEx-MRI-GARK methods [Chinomona & R., SISC, 2021]:

Natural extension of MRI-GARK to incorporate fE into slow time scale.

Up to O
(
H4
)
conditions leverage the GARK framework [Sandu & Günther, SINUM, 2015].

These inherited the requirement for sorted abscissae, thus we struggled to derive
embedded and 4th order ImEx-MRI-GARK methods.

ImEx-MRI-SR methods [Fish, R., & Roberts, JCAM, 2024]:

Circumvent the sorted abscissae requirement by assuming a simpler structure,
where each inner solve evolves over [tn, tn,i].

Again leverage GARK framework for O
(
H4
)
conditions.

There is no “hidden” dependence on ∆ci = 0 for the stage structure, and no
padding is required to derive ImEx-MRI-SR methods from ImEx-ARK.

https://doi.org/10.1137/20M1354349
https://doi.org/10.1137/130943224
https://doi.org/10.1016/j.cam.2023.115534
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Multirate Exponential Runge–Kutta (MERK) and Rosenbrock (MERB) Methods
[Luan, Chinomona & R., SISC, 2020; Luan, Chinomona & R., J. Sci. Comput., 2022]

To circumvent the explosion in GARK order conditions, we leveraged exponential
method theory, replacing the action of the φj fcns. with “infinitesimal” IVP solves.

We apply multirate IVP splittings of the form

y′(t) = F (t, y) = Jny + Vnt+Nn(t, y), t ∈ [tn, tn +H], y(tn) = yn ∈ Rn.

“Fast” scale corresponds to Jny: for MERK Jn may be arbitrary, for MERB Jn = ∂F
∂y

(tn, yn).

“Slow” scale corresponds to Vnt+Nn with Vn = ∂F
∂t

(tn, yn) and Nn = F − Jny − Vnt.

Due to their exponential structure, MERK and MERB only support explicit treatment of fS .

Their implementations are nearly identical to ImEx-MRI-SR, albeit without any implicit solves.

We have embedded MERK methods up to O
(
H5
)
, and non-embedded MERB up to O

(
H6
)
.

Computational results are available in the (Appendix).

https://doi.org/10.1137/19M125621X
https://doi.org/10.1137/21M1439481
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Single rate control [Gustafsson, 1991; Söderlind, 2006]

Traditional adaptivity controls local error, ℓn := y(tn +Hn)− yn+1, by assuming yn is exact and
adapting Hn to ensure εn := ∥ℓn∥ ≤ 1 where the norm incorporates the user tolerances,

∥x∥ :=

(
1

N

N∑
i=1

(
xi

rtol|yn,i|+ atoli

)2
)1/2

A “controller” C typically depends on a few (Hk, εk), H̃ = C(Hn, εn, Hn−1, εn−1, . . . ; p), where p
is the global method order, i.e., εn ≤ c(t)Hp+1

n , for some c(t) independent of Hn.

The simple I controller assumes equality above, and a piecewise constant c = εn

H
p+1
n

, to predict H̃:

1 = cH̃p+1 = εn
H̃p+1

Hp+1
n

⇔ H̃ =
Hn

ε
1/(p+1)
n

.

More advanced options exist, that typically use additional (Hk, εk) values to build higher-degree
piecewise polynomial approximations of the principal error function.

For multirate control, we thus require both a strategy to estimate local temporal errors εSn and εFn , and
algorithms for selecting step sizes H and h.

http://portal.acm.org/citation.cfm?doid=210232.210242
https://www.sciencedirect.com/science/article/abs/pii/S0168927405000954
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MRI time step control – Decoupled (Dec) controllers

The simplest approach to MRI adaptivity uses decoupled single-rate controllers:

H̃ = CS(Hn, ε
S
n, Hn−1, ε

S
n−1, . . . ;P ),

h̃ = CF (hn,m, εFn,m, hn,m−1, ε
F
n,m−1, . . . ; p),

where (Hk, ε
S
k ) are the stepsize and local error estimates for time step k at the slow time scale, and

(hk,l, ε
F
k,l) are the stepsize and local error estimates for the fast substep l within the slow step k.

CS and CF are distinct, so selection of H̃ and h̃ occurs independently.

We expect this to work well for problems with weakly coupled time scales.

Due to its decoupled nature, this trivially extends to an arbitrary number of time scales, allowing
adaptivity for so-called “telescopic” MRI methods.
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MRI time step control – Step-tolerance (H-Tol) controllers

For problems with more strongly coupled scales, we may want tighter accuracy, tolfacn, from the inner
solver. When called over the slow step [tn, tn +H], we assume the accumulated fast error satisfies

εFi = χ(tn)Hn (tolfacn) ,

where χ(tn) is independent of tolfacn, but may vary with time.

This fits the asymptotic error assumption εn = c(t)hp+1, through identifying χ(tn)Hn with c(t),
tolfacn with h, and p = 0. Thus a single-rate controller could adjust tolfacn between slow step
attempts, and we construct an “H-Tol” MRI controller from three single-rate controllers:

CS,H(Hn, ε
S
n, Hn−1, ε

S
n−1, . . . ;P ) – adapts Hn to achieve user-requested solution tolerances

CS,Tol(tolfacn, ε
F
n , tolfacn−1, ε

F
n−1, . . . ; 0) – adapts tolfacn using the strategy described above

CF (hn,m, εFn,m, hn,m−1, ε
F
n,m−1, . . . ; p) – adapts inner time steps hn,m to achieve tolfacn

This class of controllers also support telescopic multirate methods.
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MRI time step control – Coupled (H-h) controllers [Fish & R., SISC, 2023]

This pre-existing class extended the single-rate derivations of [Gustafsson, 1994] by approximating both slow
and fast principal error functions using piecewise polynomials. Four MRI controllers were proposed that
simultaneously adapt Hn and Mn = Hn/hn:

constant-constant: Hn+1 = Hn

(
εSn+1

)α
, Mn+1 = Mn

(
εSn+1

)β1
(
εFn+1

)β2 ,

linear-linear: Hn+1 = Hn

(
Hn

Hn−1

)(
εSn+1

)α1
(
εSn
)α2 ,

Mn+1 = Mn

(
Mn

Mn−1

)(
εSn+1

)β11
(
εSn
)β12

(
εFn+1

)β21
(
εFn
)β22 .

PIMR (a multirate extension of the PI single-rate controller):

Hn+1 = Hn

(
εSn+1

)α1
(
εSn

)α2

, Mn+1 = Mn

(
εSn+1

)β11
(
εSn

)β12
(
εFn+1

)β21
(
εFn

)β22

.

PIDMR (a multirate extension of the PID single-rate controller):

Hn+1 = Hn

(
εSn+1

)α1
(
εSn

)α2
(
εSn−1

)α3

,

Mn+1 = Mn

(
εSn+1

)β11
(
εSn

)β12
(
εSn−1

)β13
(
εFn+1

)β21
(
εFn

)β22
(
εFn−1

)β23

.

https://doi.org/10.1137/22M1479798
https://doi.org/10.1145/198429.198437
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Kværno-Prothero-Robinson (KPR) test problem

(
u′(t)
v′(t)

)
=

[
G es
ef −1

]((
u2 − p− 2

)
/(2u)(

v2 − q − 2
)
/(2v)

)
+

(
p′(t)/(2u)
q′(t)/(2v)

)
,

over 0 ≤ t ≤ 5, where p(t) = cos(t) and q(t) = cos(ωt(1 + e−(t−2)2)).

The analytical solution is u(t) =
√

2 + p(t) and v(t) =
√

2 + q(t).

es determines the coupling from the fast to the slow time scale,

ef determines the coupling from the slow to the fast time scale,

G < 0 determines the stiffness at slow time scale,

ω that determines the time-scale separation factor.

Top right: analytical solutions with G = −10, es = ef = 1/10, ω = 5.
Bottom right: internal single-rate time steps.
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Stiff Brusselator test problem

u′(t)
v′(t)
w′(t)

 =

a+ vu2 − (w + 1)u
−vu2 + wu
b−w
ϵ

− wu

 , 0 ≤ t ≤ 10.

Initial condition
(
1.2, 3.1, 3

)T
; parameters a = 1, b = 3.5.

ϵ is the stiffness parameter. MRI methods are often used to
circumvent implicit solves using explicit substepping.

Sharp solution transition at t ≈ 6.5 stresses slow time scale
temporal adaptivity.

Top right: example solution with ϵ = 1/2500.
Bottom right: internal single-rate time steps.
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Embedded MRI methods

We test MRI adaptivity using 15 embedded MRI methods of varying order and type:

MRI-GARK methods from [Sandu, 2019]:

Explicit ERK22a, ERK22b, ERK33a, and ERK45a methods (orders 2, 2, 3, 4)

Implicit IRK21a, ESDIRK34a, and ESDIRK46a methods (orders 2, 3, 4)

Explicit RALSTON2 MRI-GARK method (order 2) from [Roberts, 2022]

IMEXSR21, IMEXSR32, and IMEXSR43 ImEx-MRI-SR methods (orders 2, 3, 4) from [Fish et al.,

2024]

MERK21, MERK32, MERK43, and MERK54 explicit MERK methods (orders 2, 3, 4, 5) from [Luan et al.,

2020] (custom embeddings)

Each of the above methods include an embedding with order of accuracy one lower.

https://epubs.siam.org/doi/10.1137/18M1205492
https://epubs.siam.org/doi/10.1137/20M1386281
https://doi.org/10.1016/j.cam.2023.115534
https://doi.org/10.1016/j.cam.2023.115534
https://epubs.siam.org/doi/10.1137/19M125621X
https://epubs.siam.org/doi/10.1137/19M125621X
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MRI adaptive accuracy – KPR

We compare the ability of each method to achieve the target accuracy over all components l and time

steps n for the KPR test: accuracy = max
n,l

∣∣∣∣ yn,l − yref,l(tn)

abstol+ reltol |yref,l(tn)|

∣∣∣∣.
Left order 2,
Center order 3,
Right orders 4-5

Shading includes
all results from a
family.

H-Tol and Dec
robust across all
tests.

H-h accuracy
varies wildly
across methods.

10−7 10−6 10−5 10−4 10−3

reltol

10−1

100

101

102

103

ac
cu

ra
cy
ω

=
50

10−7 10−6 10−5 10−4 10−3

reltol

10−1

100

101

102

103

104

ac
cu

ra
cy
ω

=
50

0
Family

H-h

Htol

Decoupled

10−7 10−6 10−5 10−4 10−3

reltol

100

101

102

103

104

ac
cu

ra
cy
ω

=
50

10−7 10−6 10−5 10−4 10−3

reltol

100

101

102

103

104

ac
cu

ra
cy
ω

=
50

0

Family

H-h

Htol

Decoupled

10−7 10−6 10−5 10−4 10−3

reltol

100

101

102

103

ac
cu

ra
cy
ω

=
50

10−7 10−6 10−5 10−4 10−3

reltol

100

101

102

103

104

ac
cu

ra
cy
ω

=
50

0

Family

H-h

Htol

Decoupled



D.R. Reynolds 23/32

Background MRI Methods MRI Adaptivity Results Conclusions & future work

MRI adaptive accuracy – Stiff Brusselator

We repeat the previous experiment for the stiff Brusselator test:

H-Tol and Dec
robust for all
but ESDIRK34a,
ESDIRK46a

H-h fails for all
but MERK21 and
MERK32.
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MRI adaptive efficiency

We ran 4200 tests varying problem setup, MRI method, adaptivity controller, and tolerance, to
determine the most “efficient” combinations. The optimal embedded MRI methods varied for each test
problem and choice of work metric (so we recommend using libraries like ARKODE that allow
experimentation), but some controllers rose to the top (H-h controllers never won).

Below: best O
(
H3

)
methods for stiff Brusselator.
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MRI adaptive efficiency statistics

We computed z-scores for each controller’s average rank when holding other variables constant (MRI
method, multirate ratio, etc.). Ranking these separately for slow time scale work (left) and fast time
scale work (right):

Slow Scale
Multirate controller z-score
HT-I -0.691
HT-H0321 -0.350
HT-H312 -0.276
HT-H0211 -0.265
HT-H211 -0.254
D-I 0.065
D-H312 0.308
D-H211 0.422
D-H0321 0.444
D-H0211 0.599

Fast Scale
Multirate controller z-score
D-I -0.558
D-H312 -0.419
D-H211 -0.405
D-H0321 -0.180
D-H0211 0.035
HT-I 0.150
HT-H211 0.190
HT-H312 0.246
HT-H0321 0.441
HT-H0211 0.499
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MRI adaptive step histories – KPR

We plot the slow and fast step size histories for the HT-H211, D-H211 and MRI-CC controllers using
MRI ERK33a at reltol = 10−5, listing the total numbers of slow and fast time steps, and accuracy ratio.

As expected, HT-H211 and D-H211 achieve reasonable accuracy, with HT-H211 moving some work
from the slow to fast scales. MRI-CC handles slow adaptivity relatively well, but does not allow
sufficient fast time scale separation, leading to large error.
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10−2

10−1

H

KPR step size history
Controller

D-H211
steps: 499, 22251
accuracy: 7.8

HT-H211
steps: 288, 149099
accuracy: 3.7

MRI-CC
steps: 341, 3609
accuracy: 719196.0
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Use in Real-Time Boltzmann Transport collaboration
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Accelerating Real-Time Boltzmann Transport Equation Simulations

With the Death Valley SciDAC BES Partnership

Scientific Achievement
• Electronic structure calculations in the time domain provide a deeper understanding of 

nonequilibrium dynamics in materials. 

• The real-time Boltzmann equation (rt-BTE) enables reliable predictions of coupled 
electron and lattice dynamic however, the different time scales of the system and 
computational cost of collision integrals make simulating long times intractable. 

• Utilizing adaptive and multirate time integrators from the SUNDIALS library leads to at 
least 10x faster simulations and enables long time simulations of bulk materials.

Significance and Impact
• Coherent control of electronic and lattice degrees of freedom is a novel frontier in 

materials physics that requires understanding processes across different time scales.

• Efficient computational methods are necessary to unravel the microscopic mechanisms 
of ultrafast dynamics and quantitatively interpret time-domain spectroscopies.

• Advanced time integration methods make studies of ultrafast electronic and lattice 
dynamics in materials driven by optical or terahertz pulses possible.

Comparison of the solution accuracy versus run time simulating coupled electron and 
lattice dynamics in graphene with fixed step sizes (orange), a single rate method with 
adaptive step sizes (gray), and a multirate method with adaptive fast step sizes. 
Points closer to the lower left corner are more efficient (lower error and less run 
time). The multirate methods provides at least a 10x speedup over fixed steps.

Technical Approach
• Multriate methods improve computational efficiency by advancing slow, expensive 

processes with large time steps while fast, cheap processes use smaller steps. 

• Adaptive methods vary the step size to track the changing dynamics of the problem.
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Technical Approach
• Multriate methods improve computational efficiency by advancing slow, expensive 

processes with large time steps while fast, cheap processes use smaller steps. 

• Adaptive methods vary the step size to track the changing dynamics of the problem.

Multirate adaptivity

More recently, we’ve applied our Decoupled
controllers for slow step adaptivity, which improves
on the best green dot/cross:

∼1.5x runtime speedup

∼1.5x improved carrier (electron) accuracy

∼20x improved phonon accuracy
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Conclusions and future work

Today’s rich ecosystem of scientific applications requires an equally rich “toolkit” of solvers.

Novel time integration methods aim to achieve higher order, increased flexibility, improved
stability, and robust temporal adaptivity.

Here, I focused on multirate adaptivity:

Both the Dec and H-Tol families show robust adaptive control across a wide range of
problem types, tolerances, and MRI methods.

By shifting some burden to the inner solver, H-Tol is optimal for problems where the slow
operator dominates the cost.

H-h controllers struggle since they artificially constrain the step size ratio Mn = Hn/hn.

All MRI methods in this talk (except MERB), along with the Dec an H-Tol families, are available
within the ARKODE solver from the SUNDIALS library.

We are actively testing and optimizing these methods on large-scale application codes, including
Perturbo (solid state physics) and BOUT++ (fusion).

https://github.com/LLNL/sundials
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SUNDIALS

3

▪ Library of time integrators and nonlinear solvers

— Packages: CVODE(S), ARKODE, IDA(S), and KINSOL

— Written in C with modern Fortran interfaces

— Designed to be easily incorporated into existing codes

▪ Modular implementation

— Data manipulation and parallelism are encapsulated by vector, 
matrix, and solver classes and user-supplied callback functions

— Native class implementations for serial, threaded, distributed, 
and GPU computing platforms

— Vector, matrix, and solver classes can all be user-supplied

▪ Freely available under BSD 3-Clause license

— 100,000+ downloads per year: github.com/LLNL/sundials

— Detailed user manuals: sundials.readthedocs.io

— Active user community supported by email list and GitHub issues

Suite of Nonlinear and Differential-
Algebraic Solvers

Isosurfaces of diesel fuel entering a turbulent methane-air 
premixture. High temperature pockets (red and yellow) 
form when local kernels of diesel fuel ignite.

This simulation ran on 7,000 Frontier nodes at OLCF using 
SUNDIALS to solve the chemistry systems in every grid cell 
in a 7-layer adaptive mesh hierarchy (60B grid cells and 
approximately 2.4T degrees of freedom).

Courtesy of Marc Day and Jon Rood (NREL). Animation by Nicholas 
Brunhart-Lupo (NREL).

Pele Combustion Simulations on Frontier

computing.llnl.gov/sundials
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SUNDIALS Solvers

4

▪ CVODE: adaptive order and step size linear multistep methods for ODEs, 𝑦′ = 𝑓 𝑡, 𝑦  

— Adams methods for non-stiff systems and BDF methods for stiff systems

▪ IDA: adaptive order and step size BDF methods for DAEs, 𝐹 𝑡, 𝑦, ሶ𝑦 = 0

— Targets implicit ODEs, index-1 DAEs, and Hessenberg index-2 DAEs

▪ CVODES and IDAS support forward and adjoint sensitivity analysis (user-suppled adjoint operator)

▪ ARKODE: infrastructure for adaptive step multistage methods

Adaptive Methods for Ordinary Differential Equation (ODE) and 
Differential-Algebraic Equation (DAE) Initial Value Problems (IVPs)

Stepper Methods Systems

ARKStep ERK, DIRK, and IMEX 𝑀 𝑡  𝑦′ = 𝑓𝐸 𝑡, 𝑦 + 𝑓𝐼 𝑡, 𝑦

ERKStep ERK (streamlined module) 𝑦′ = 𝑓 𝑡, 𝑦

LSRKStep Low-storage SSP and STS 𝑦′ = 𝑓 𝑡, 𝑦

MRIStep Multirate infinitesimal (MRI) step 𝑦′ = 𝑓𝑆 𝑡, 𝑦 + 𝑓𝐹 𝑡, 𝑦

SPRKStep Symplectic partitioned RK 𝑝′ = 𝑓𝑝 𝑡, 𝑞 , 𝑞′ = 𝑓𝑞 𝑡, 𝑝

SplittingStep Operator splitting 𝑦′ = 𝑓1 𝑡, 𝑦 + ⋯ + 𝑓𝑁 𝑡, 𝑦
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SUNDIALS team

8

Current SUNDIALS Team

Current Team:

Alumni:

David Gardner Alan Hindmarsh Dan Reynolds

Radu Serban

Scott D. Cohen, Peter N. Brown, George Byrne, 
Allan G. Taylor, Steven L. Lee, Keith E. Grant, Aaron 
Collier, Lawrence E. Banks, Steve G. Smith, Cosmin 
Petra, Homer Walker, Slaven Peles, John Loffeld, 
Dan Shumaker, Ulrike M. Yang, James Almgren-Bell, 
Shelby L. Lockhart, Rujeko Chinomona, Daniel 
McGreer, Hunter Schwartz, Hilari C. Tiedeman, Ting 
Yan, Jean M. Sexton, and Chris White

Carol WoodwardSteven RobertsCody Balos

Postdocs:

Mustafa Aggul Sylvia Amihere Yifan Hu
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Implicit-Explicit Multirate Infinitesimal GARK Methods [Chinomona & R., SISC, 2021]

Extended Sandu’s MRI-GARK methods to support implicit-explicit treatment of
the slow time scale:

ẏ(t) = fI(t, y) + fE(t, y)︸ ︷︷ ︸
fS(t,y)

+fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

These define an ImEx forcing function

ri(t) =

i∑
j=1

γi,j
(

t−tn
(ci−ci−1)H

)
fI(tn,j , zj) +

i−1∑
j=1

ωi,j

(
t−tn

(ci−ci−1)H

)
fE(tn,j , zj),

Order conditions up to O
(
H4
)
leverage the GARK framework [Sandu & Günther, SINUM, 2015].

These inherited the requirement for sorted abscissae, thus we struggled to derive embedded and
4th order ImEx-MRI-GARK methods.

https://doi.org/10.1137/20M1354349
https://doi.org/10.1137/130943224
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ImEx-MRI-GARK Construction [Chinomona & R., SISC, 2021]

Begin with an ImEx-ARK pair {AI , bI , cI ;AE , bE , cE} where cI = cE ≡ c with 0 = c1 ≤ · · · ≤ cs̃ ≤ 1.

Convert to solve-decoupled form: insert redundant stages such that ∆ciA
I
ii = 0 for i = 1, . . . , s.

Extend AI , AE and c to ensure “stiffly-accurate” condition: cs = 1, AI
s,: = bI , AE

s,: = bE .

Generate Γ(k) and Ω(k) for k = 0, . . . , kmax, to satisfy ARK consistency (s2 conditions), internal
consistency (2s(kmax + 1) conditions), plus order conditions:

O
(
H1
)
and O

(
H2
)
: no additional order conditions,

O
(
H3
)
: 2 additional order conditions,

O
(
H4
)
: 16 additional order conditions.

With any additional degrees of freedom, we maximized “joint linear stability”.

Note: we found it challenging to construct embedded ImEx-MRI-GARK methods, largely due to our
reliance on ImEx-ARK base methods and the “sorted” abscissa requirement.

https://doi.org/10.1137/20M1354349
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ImEx-MRI-GARK Convergence/Efficiency [Chinomona & R., SISC, 2021]
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https://doi.org/10.1137/20M1354349
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Implicit-Explicit Multirate Infinitesimal Stage-Restart Methods [Fish, R., & Roberts, JCAM, 2024]

To circumvent the sorted abscissae requirement, we developed ImEx-MRI-SR
methods by assuming a simpler structure for the step yn → yn+1:

1. Let: z1 := yn.

2. For each slow stage zi, i = 2, . . . , s:

a) Define: ri(t) :=
i−1∑
j=1

ωi,j

(
t−tn
ciH

)(
fE
j + fI

j

)
, with ωi,j(θ) :=

1
ci

nΩ−1∑
k=0

ω
{k}
i,j θk.

b) Evolve: v̇(t) = fF (t, v) + ri(t), for t ∈ [tn, tn,i], v(tn) := yn.

c) Solve: zi = v(tn,i) +H
i∑

j=1
γi,jf

I(tn,j , zj).

3. Let: yn+1 := zs.

For brevity above, we denote fE
j := fE(tn,j , zj) and fI

j := fI(tn,j , zj).

The embedding has an identical structure as the last stage, zs.

There is no “hidden” dependence on ∆ci = 0 for the stage structure, and no padding7 is required to derive
ImEx-MRI-SR methods from ImEx-ARK.

https://doi.org/10.1016/j.cam.2023.115534
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ImEx-MRI-SR Construction [Fish, R., & Roberts, JCAM, 2024]

Again take an an ImEx-ARK pair {AI , bI , cI ;AE , bE , cE} where cI = cE ≡ c (not necessarily sorted).

Extend AI , AE and c to ensure “stiffly-accurate” condition: cs = 1, AI
s,: = bI , AE

s,: = bE .

Generate Γ and Ω(k) for k = 0, . . . , nΩ, to satisfy ImEx-ARK consistency (s2 conditions), internal
consistency (s(2 + nΩ) conditions), plus order conditions:

O
(
H1
)
and O

(
H2
)
: no additional order conditions,

O
(
H3
)
: 1 additional order condition,

O
(
H4
)
: 6 additional order conditions.

With remaining degrees of freedom, maximize joint linear stability for the method and minimize
leading order error for embedding.

https://doi.org/10.1016/j.cam.2023.115534
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ImEx-MRI-SR Convergence/Efficiency – Stiff Brusselator PDE [Fish, R., & Roberts, JCAM, 2024]

Fixed step size runtime efficiency: ImEx-MRI-SR,
ImEx-MRI-GARK, and ImEx-MRI versions of
Lie–Trotter and Strang–Marchuk methods.

Adaptive ImEx-MRI-SR efficiency: modified problem
with time-dependent advection, diffusion and reaction
coefficients, using tolerances 10−k with k = 1, . . . , 9:
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https://doi.org/10.1016/j.cam.2023.115534
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MERK and MERB Convergence/Efficiency – Reaction-Diffusion PDE
[Luan, Chinomona & R., SISC, 2020; Luan, Chinomona & R., J. Sci. Comput., 2022]]]

Problem: ut = ϵuxx + γu2(1− u), x ∈ (0, 5), t ∈ [0, 5],

with γ = 0.1, ϵ = 10−2, λ =
√
5, u(x, 0) = (1 + exp(λ(x− 1)))−1, and ux(0, t) = ux(5, t) = 0.

Efficiency plots (runtime, RHS calls, Nn calls):

Top-right: O
(
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)
methods

Bottom-left: O
(
H4

)
methods

Bottom-right: O
(
H5

)
and O

(
H6

)
methods

Methods∗ use a “natural” splitting; others
use dynamic linearization.
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