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Multiphysics/Multirate Problems [Keyes et al. 2013]

“Multiphysics” problems couple models together either in the bulk (cosmology, combustion) or across
interfaces (climate, tokamak fusion), challenging traditional numerical methods.

“Multirate”: processes evolve on different time scales, may not admit analytical reformulation.

Existence of stiff components prohibits fully explicit methods.

Nonlinearity and insufficient differentiability challenge fully implicit methods.

Parallel scalability demands optimal algorithms – while robust/scalable algebraic solvers exist for
some pieces (e.g., FMM for particles, multigrid for diffusion), none are optimal for the full problem.

Here we’ll consider the prototypical problem

y′(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn.

fS(t, y) contains “slow” components that evolve with time scale H, and

fF (t, y) contains “fast” components that evolve with time scale h� H.

fS or fF may be further decomposed into stiff/nonstiff or fast/slow parts.
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Legacy Multirate Approaches

Historical approaches for the time step yn ≈ y(tn)→ yn+1 ≈ y(tn +H) include first-order Lie–Trotter
splittings and subcycling, e.g.,

1. Compute: y
(1)
n = yn +HfS(tn, yn)

2. Evolve: v′(τ) = fF (tn + τ, v), for τ ∈ [0, H], v(0) = y
(1)
n , and let yn+1 = v(H).

or potentially “Strang–Marchuk” splitting, e.g.,

1. Compute: y
(1)
n = yn + H

4
fS(tn, yn) + H

4
fS
(
tn + H

2
, yn + H

2
fS(tn, yn)

)
2. Evolve: v′(τ) = fF (tn + τ, v), for τ ∈ [0, H], v(0) = y

(1)
n and let: y

(2)
n = v(H)

3. Compute: yn+1 = y
(2)
n + H

4
fS
(
tn + H

2
, y

(2)
n

)
+ H

4
fS
(
tn+1, y

(2)
n + H

2
fS
(
tn + H

2
, y

(2)
n
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Legacy Multirate Approaches – Shortcomings

Low accuracy due to loose “initial condition”
coupling:

Lie-Trotter is O(H) and Strang-Marchuk
is O

(
H2
)
.

Extrapolation can improve this but at
significant cost.

The spatial discretization is based on a finite element discretization of a Galerkin formulation using a
uniform grid of 500 elements with linear basis functions. This results in a system identical to Eq. (4) but
with the u, FR, and FD replaced by their discretized representations. The discretized representations of
FR and FD incorporate contributions from the mass matrix of the transient term.

The error that we report here is the ratio of the L2 norm of the difference of the numerical solution and a
reference solution to the L2 norm of the reference solution. The reference solution is computed using two-
point Richardson extrapolation of solutions using a second-order fully-implicit method at the two smallest
values of Dt.

3. Preliminary experiments and observations

We first summarize previously reported results. Fig. 1 shows the norm of the error of the solutions at
t = 80 ! 6.7s. Results are shown for FS-DR using backward Euler for the diffusion term, Strang RDR
using trapezoidal rule for the diffusion term, and trapezoidal rule for the fully coupled system. Both FS-
DR and trapezoidal rule have good convergence for the entire range of Dt at their expected rates of con-
vergence. For Strang RDR, however, there is no convergence unless Dt is sufficiently small. For Dt small
enough, the convergence is second-order as expected and the error is almost two orders of magnitude less
than that of trapezoidal rule.

In fact if we look at the solution using Strang RDR we see that high wave number oscillations have pol-
luted the solution, suggesting an instability. This is seen in Fig. 2, which plots the solution using Strang
RDR with Dt = 1.6 = 0.13s at t = 32 against a reference solution at this time. This behavior has been dis-
cussed previously in [13]. Here, we note that we need to use nearly 1000 time steps per period in order to get
acceptable accuracy and convergence. This is very restrictive, and suggests a fundamental problem in using
this method to solve this system of equations. In addition, as demonstrated in [13], these methods exhibit
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Fig. 1. Temporal convergence FS-DR, Strang RDR, and trapezoidal at t = 80 ! 6.7s (s = 12). The dotted lines are references with
first- and second-order slopes.

452 D.L. Ropp, J.N. Shadid / Journal of Computational Physics 203 (2005) 449–466

Convergence of splitting

approaches (brusselator)

[Ropp & Shadid 2005].

Poor stability:

Even with
“stable” step
sizes for each
part, unstable
modes may arise.

!  Example from Estep et al. (2007),   ! = 2, u0 = 1 
!  50 time steps, phase 1 subcycled inside phase 2 

Operator splitting can destabilize multiphysics  

)1)(exp(1

)exp(
)(

0,)0(,

0

0

0
2

!!+

!
=

>==+

tu
tutu

tuuuuu

"
"

"

"!

)exp(
1

))(exp()()(
)(1

)(

1

1

t
tU

UU

tttutu
ttU

Utu

k

k
k

kkRD

kk

k
R

!"
!"

=

""=

""
=

+

+

#

#

1 “R” per “D” 5 “R” per “D” 10 “R” per “D” 

Subcycling stability

(reaction-diffusion)

[Estep et al. 2008].

https://www.smu.edu
https://www.temple.edu
https://www.msstate.edu
https://scidac5-fastmath.lbl.gov/home
https://computation.llnl.gov/projects/sundials


D.R. Reynolds, R. Chinomona, V.T. Luan 7/29

Background MERK & MERB Methods IMEX-MRI-GARK Methods Conclusions, Etc.

Multirate Improvements

In recent decades, improvements to accuracy and stability for multirate numerical methods have
generally taken one of two forms:

A. Tighter slow ↔ fast coupling1:

+ typically only require a single traversal of the step [tn, tn+1] by each operator

− typically only enable O
(
H2
)

or O
(
H3
)

B. Extrapolation / deferred correction techniques2:

+ potential for arbitrarily-high accuracy

− require many traversals of the step [tn, tn+1]

In this work we pursue approach A.

1 Gear & Wells 1984; Günther, Kværnø & Rentrop 1999-2002; Constantinescu & Sandu 2007-09; Fok 2016; Arnold, Galant, Knoth, Schlegel, Wensch & Wolke 2009-14

2 Engstler, Hairer, Lubich, Ostermann 1990-97; Constantinescu & Sandu 2010-13, Bouzarth & Minion 2010
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“Infinitesimal” Multirate Methods (MIS, RFSMR) [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

The infinitesimal family of multirate methods allow up to O
(
H3
)

accuracy, through more tightly
coupling the fast and slow operators. Returning to our prototypical problem:

y′(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn.

the slow component is integrated using an explicit “outer” RK method, TO = {A, b, c}, where
0 = c1 ≤ c2 ≤ . . . ≤ cs ≤ 1;

the fast component is assumed to exactly solve a modified IVP (next slide);

practically, this fast solution is subcycled using an “inner” RK method.
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MIS Algorithm

A single MIS step yn → yn+1 has the form:

1. Let: z1 = yn

2. For i = 2, . . . , s:

a. Define: r =

i−1∑
j=1

αijf
S (tn + cjH, zj)

b. Evolve: v′(τ) = fF (tn + τ, v) + r, for τ ∈ [ci−1H, ciH], v(ci−1H) = zi

c. Let: zi = v(ciH)

3. Let yn+1 = zs

Here, the constants αij are uniquely defined from the “slow” Butcher table, TO.

When ci = ci−1, the IVP “solve” reduces to a standard RK update.

The “fast” IVP in step 2b may be solved using any viable algorithm.
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MIS Properties

MIS methods satisfy a number of desirable properties:

O
(
H2
)

if both inner/outer methods are at least O
(
H2
)
.

O
(
H3
)

if both inner/outer methods are at least O
(
H3
)
, and TO satisfies

s∑
i=2

(ci − ci−1) (ei + ei−1)T Ac+ (1− cs)
(

1

2
+ eTs Ac

)
=

1

3
.

The inner method may be a subcycled TO, enabling a telescopic multirate method (i.e., n-rate
problems supported via recursion).

Both inner/outer methods can utilize problem-specific tables (SSP, etc.).

Highly efficient – only a single traversal of [tn, tn+1] is required. To our knowledge, MIS are the
most efficient O

(
H3
)

multirate methods available.
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Higher-order MIS-like methods [Sandu 2019; Bauer & Knoth 2019; Sexton & R. 2019]

In the last few years groups have worked to extend the MIS approach to O
(
H4
)

accuracy:

MRI-GARK modifies the fast IVP:

r → r(τ) =
i∑

j=1

γi,j

(
τ

(ci − ci−1)H

)
fS (tn + cjH, zj),

and supports “solve-decoupled” implicit methods at the slow time scale (i.e., alternate between
DIRK-like solves and fast IVP evolution).

extMIS relaxes the MIS structure slightly, and then develops additional order conditions on TO.

RMIS computes yn+1 as a linear combination of
{
fS(tn + ciH, zi) + fF (tn + ciH, zi)

}s
i=1

,
additionally enabling conservation of linear invariants.
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Multirate Exponential Runge–Kutta (MERK) & Rosenbrock (MERB) Methods [Luan, Chinomona & R., SISC 2020 & arXiv 2021]

We consider multirate IVP splittings of the form

y′(t) = F (t, y) = Jny + Vnt+Nn(t, y), t ∈ [tn, tn +H], y(tn) = yn ∈ Rn.

“Fast” scale corresponds to Jny: for MERK Jn may be arbitrary, for MERB Jn = ∂F
∂y

(tn, un).

“Slow” scale corresponds to Vnt+Nn(t, y) with Vn = ∂F
∂t

(tn, yn) and Nn(t, y) = F (t, y)− Jny − Vnt.
MERK, and MERB for autonomous systems, have Vn = 0, allowing some simplifications.

This problem has the same structure assumed by ExpRK and ExpRB methods, that approximate yn+1 via:

zi = yn + ciHϕ1(ciHJn)F (tn, yn) + c2iH
2ϕ2(ciHJn)Vn +H

i−1∑
j=2

aij(HJn)Dnj , 1 ≤ 2 ≤ s,

yn+1 = yn +Hϕ1(HJn)F (tn, yn) +H2ϕ2(HJn)Vn +H
s∑
i=2

bi(HJn)Dni,

where Dni = Nn(tn + ciH, zi)−Nn(tn, yn), and aij(z), bi(z) are typically linear combinations of ϕk(ciz)

and ϕk(z), with ϕk(z) =
1
Hk

∫H
0 e(1−τ/H)z τk−1

(k−1)!
dτ, k ≥ 1.
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MERK & MERB Construction

Theorem (Luan, Chinomona & R., 2020 & 2021)

Assuming that aij(HJn), bi(HJn) are strictly linear combinations of ϕk(ciHJn) and ϕk(HJn),
respectively:

aij(HJn) =

lij∑
k=1

α
(k)
ij ϕk(ciHJn), bi(HJn) =

mi∑
k=1

β
(k)
i ϕk(HJn),

then zi and yn+1 are the exact solutions of the “fast” IVPs

v′n,i(τ) = Jnvn,i(τ) + pni(τ), vn(0) = yn, i = 1, . . . , s,

v′n+1(τ) = Jnvn+1(τ) + qn(τ), vn+1(0) = yn

at τ = ciH and τ = H, respectively, where

pn,i(τ) = Nn(tn, yn) + (tn + τ)Vn +

i−1∑
j=2

 lij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τk−1

 Dnj ,

qn(τ) = Nn(tn, yn) + (tn + τ)Vn +
s∑
j=2

(
mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τk−1

)
Dni.
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MERK & MERB Convergence

Theorem (Luan, Chinomona & R., 2020 & 2021)

Assuming that a MERK or MERB method is constructed from an ExpRK or ExpRB method of global
order p, with the associated “fast” IVPs integrated with a step h = H/m using methods with global
orders q and r, respectively, then:

‖yn − y(tn)‖ ≤ C1H
p + C2Hh

q + C3h
r

on t0 ≤ tn = t0 + nH ≤ tf . Here C1 depends on tf − t0 but is independent of n and H; C2 and C3

depend on the global order error constants of the chosen IVP solvers.

Note the second term: for an order p method a “fast” solver for zi need only have order q = p− 1.

Evolve each stage over [0, ciH] – overall “fast traversal time” is
(
1 +

s∑
i=1

ci
)
H (typically < 3H).

Since MERB methods may assume ∇Nn = 0 they have dramatically fewer order conditions,
resulting in fewer fast solves and reduced fast traversal time.
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MERK & MERB Methods

Comparison of MERK and MERB methods against Sandu’s explicit MRI-GARK methods of comparable order.

“Slow stages” corresponds to the number of evaluations of Nn
“Modified IVPs” corresponds to the number of fast IVP solves

Type Order Slow stages Modified IVPs Fast traversal time

MERK

3 3 3 2.17H

4 6 4 2.83H

5 10 5 3.2H

MERB

3 2 2 1.5H

4 2 2 1.75H

5 4 3 2.08H

6 7 3 1.25H

MRI-GARK
3 3 3 H

4 5 5 H

? ? ? MERK5, MERB5 and MERB6 are the first-ever infinitesimal methods with order > 4 ? ? ?
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MERK & MERB Results – Reaction-Diffusion PDE test

Problem: ut = εuxx + γu2(1− u), x ∈ (0, 5), t ∈ [0, 5],

with γ = 0.1, ε = 10−2, λ =
√
5, u(x, 0) = (1 + exp(λ(x− 1)))−1, and ux(0, t) = ux(5, t) = 0.

Efficiency plots (runtime, total RHS calls, Nn calls):

Top-right: O
(
H3

)
methods

Bottom-left: O
(
H4

)
methods

Bottom-right: O
(
H5

)
and O

(
H6

)
methods

Methods∗ use a “natural” splitting; others use
dynamic linearization.
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Implicit-Explicit Multirate Infinitesimal GARK Methods [Chinomona & R., SIAM J. Sci. Comput., 2021]

To better support the flexibility needs of multiphysics problems, we have extended Sandu’s MRI-GARK
methods to support implicit-explicit treatment of the slow time scale, for problems of the form:

y′(t) = fI(t, y) + fE(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn.

These follow the same basic approach as the previous MIS algorithm, but with

r(τ) =
i∑

j=1

γij
(

τ
∆ciH

)
fI(tn + cjH, zj) +

i−1∑
j=1

ωij
(

τ
∆ciH

)
fE(tn + cjH, zj),

where ∆ci = ci − ci−1, γij(θ) :=
∑kmax
k=0 γ

{k}
ij θk and ωij(θ) :=

∑kmax
k=0 ω

{k}
ij θk.

The coefficients Γ{k},Ω{k} ∈ Rs×s are lower and strictly lower triangular, respectively.

We provide order conditions up to O
(
H4
)
, relying on GARK framework [Sandu & Günther 2015].

While theory supports “solve-coupled” methods; our current tables are solve-decoupled.
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IMEX-MRI-GARK Construction

Begin with an IMEX-ARK pair {AI , bI , cI ;AE , bE , cE} where cI = cE ≡ c with 0 = c1 ≤ · · · ≤ cs̃ ≤ 1.

Convert to solve-decoupled form: insert redundant stages such that ∆ciA
I
ii = 0 for i = 1, . . . , s.

Extend AI , AE and c to ensure “stiffly-accurate” condition: cs = 1, AIs,: = bI , AEs,: = bE .

Generate Γ(k) and Ω(k) for k = 0, . . . , kmax, to satisfy ARK consistency, internal consistency,
order conditions, and maximize “joint stability” [Zharovsky et al. SINUM 2015; Sandu SINUM 2019]:

Jα,β :=
{
zE ∈ C− :

∣∣∣R(zF , zE , zI)∣∣∣ ≤ 1, ∀zF ∈ SFα , ∀zI ∈ SIβ
}

Sσα :=
{
zσ ∈ C− : |arg(zσ)− π| ≤ α

}
O
(
H3
)
: s2 + 2(kmax + 1)s+ 2 algebraic conditions (plus stability opt.)

O
(
H4
)
: s2 + 2(kmax + 1)s+ 16 algebraic conditions (plus stability opt.)
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IMEX-MRI-GARK Stability – IMEX-MRI-GARK3a & IMEX-MRI-GARK3b (stab. opt.)

Jα,β regions for various implicit
sector angles β:

IMEX-MRI-GARK3a (↑)

IMEX-MRI-GARK3b (↓)

fast α = 10o (←)

fast α = 45o (→)

We have a simple O
(
H4
)

IMEX-MRI-GARK4 table for
convergence tests, but it lacks
sufficient joint stability for general
use.
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IMEX-MRI-GARK Results

10
-4

10
-3

10
-2

10
-1

10
0

H

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

M
a
x
 E

rr
o
r

Lie-Trotter  (0.99)

Strang-Marchuk  (1.98)

IMEX-MRI3a  (3.10)

IMEX-MRI3b  (3.14)

IMEX-MRI4  (4.15)

Nonlinear Kværnø-Prothero-Robinson

test problem convergence.
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Stiff brusselator PDE test runtime efficiency.

H =
{

1
40 ,

1
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}
runs were unstable for IMEX-MRI4.
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IMEX-MRI-GARK Software

With David Gardner, Cody Balos & Carol Woodward at LLNL, we have implemented support for
explicit and solve-decoupled implicit MIS and MRI-GARK methods within the MRIStep module of the
ARKODE library from SUNDIALS:

Built-in methods of orders 2, 3, and 4; user-provided MRI-GARK tables Γ{k} are supported.

Slow time scale uses a user-defined H that can be varied between steps.

Fast time scale is evolved using adaptive ARK-IMEX solver (ARKStep).

Future updates will include:

Support for user-supplied fast time scale IVP solver [next minor release, October 2021].

Support for IMEX-MRI-GARK methods [next major release, late 2021].

Temporal adaptivity at both the slow and fast time scales [∼1 year off].
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Outline
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Conclusions

Although simple operator-split subcycling remains standard, new & flexible methods are catching up.

Problems allowing explicit slow treatment may benefit from higher-order approaches:

O
(
H3
)
: MIS, MRI-GARK, MERK, MERB

O
(
H4
)
: MRI-GARK, ExtMIS, RMIS, MERK, MERB

O
(
H5
)
: MERK, MERB

O
(
H6
)
: MERB

To treat fS(t, y) implicitly, novel O
(
H3
)

MIS & MRI-GARK, or O
(
H4
)

MRI-GARK may be used.

To split fS(t, y) = fI(t, y) + fE(t, y) we may use novel O
(
H3
)

or O
(
H4
)

IMEX-MRI-GARK.

All of these methods allow (a) flexibility for fF (t, y) via “infinitesimal” structure (explicit, implicit, IMEX,
nested multirate), and (b) extension to allow temporal adaptivity of both H and h.

The optimal choice of method depends on a variety of factors:

the relative costs of fS(t, y) and fF (t, y),

whether the problem admits a good multirate splitting,

the desired solution accuracy, . . .
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Future Work

Much work remains to be done:

Advanced algorithms for “solve-coupled” MRI-GARK and IMEX-MRI-GARK.

Rigorous stability theory for additively-partitioned ODE systems (not just y′ =
∑
k

λky, that

assumes simultaneous diagonalizability).

New Γ(k) and Ω(k) tables (with embeddings) for O
(
H4
)

MRI-GARK and IMEX-MRI-GARK
methods (and order conditions for O

(
H5
)

or higher).

Improved support for MERK, MERB and other infinitesimal multirate methods within ARKODE’s
MRIStep module.
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