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Energy Exascale Earth System Model (E3SM)

Motivation: 2013 DOE report on energy sector factors

trends in air and water temperatures

water availability

storms and heavy precipitation

coastal flooding and sea-level rise

Mission (https://e3sm.org/about/vision-and-mission)

develop ensemble strategies for uncertainty
quantification

bridge the gap in scales and processes in existing
E3SM ventures

integrate ECP advances to push model
resolution capability

https://e3sm.org
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Non-hydrostatic Atmospheric Models

Increased computational power is pushing
climate model resolutions beyond the
hydrostatic limit.

Non-hydrostatic models consider the
compressible Navier Stokes equations, that
support acoustic (sound) waves.

Acoustic waves have a negligible effect on
climate.

Acoustic waves travel much faster than convection (343 m/s vs 100 m/s
horizontal and 1 m/s vertical).

To overcome this stiffness, non-hydrostatic models utilize split-explicit,
implicit-explicit, or fully implicit time integration.
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Non-hydrostatic Formulation (Tempest)

Tempest is an experimental “dycore” used for method development; it
considers 5 governing [hyperbolic] equations in an arbitrary coordinate system:
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where ρ is the density, (uα, uβ) are the horizontal velocity, w is the vertical
velocity, and θ is the potential temperature.

Key: horizontal propagation and vertical propagation.
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Non-hydrostatic Formulation (HOMME-NH)

HOMME-NH will be the “production” dycore in E3SM v2 responsible for
global atmospheric flow (again, 5 hyperbolic equations):
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where π is hydrostatic pressure, η is vertical coordinate, u and w are horizontal
and vertical velocities, θ is potential temperature, and φ is geopotential.

Key: hydrostatic model and nonhydrostatic terms.
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Spatial Semi-discretization

Both codes use spectral elements to discretize horizontally

Lagrange polynomials basis {ϕj} over GLL points

Inner product is defined by GLL quadrature:
〈ϕj , ϕk〉 =

∫
ϕj ϕk dx = wj δjk

Vertical discretizations differ; both utilize shallow cells (100:1 aspect ratio):

Tempest uses an up-to-O
(
∆ξ5

)
staggered nodal finite element method

HOMME-NH uses O
(
∆η2

)
mimetic finite differences

2D parallel domain decomposition stores entire
vertical column(s) on a single MPI task.

In both models, Jacobians of discretized RHS have
purely imaginary eigenvalues.

Both models explicitly apply “hyperviscosity” between time steps to stabilize
discretization [Ullrich et al., JCP, 2018].
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Additive Runge–Kutta (ARK) Methods [Ascher et al. 1997; Araújo et al. 1997; . . . ]

Both codes use “ARKode” for time integration, that
supports up to two split components: explicit and
implicit,

ẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

Combine two s-stage RK methods; denoting t∗n,j = tn + c∗j∆tn and
∆tn = tn+1 − tn:

zi = yn + ∆tn

i−1∑
j=1

AEi,jf
E(tEn,j , zj) + ∆tn

i∑
j=1

AIi,jf
I(tIn,j , zj), i = 1, . . . , s,

yn+1 = yn + ∆tn

s∑
j=1

[
bEj f

E(tEn,j , zj) + bIjf
I(tIn,j , zj)

]

http://www.smu.edu
https://www.llnl.gov/
https://www.sandia.gov/
https://ucdavis.edu/


Reynolds, Gardner, Vogl, Steyer, Ullrich & Woodward 11/25

Model Methods Experiments Conclusions

Solving each stage zi, i = 1, . . . , s

Each stage is implicitly defined via a root-finding problem:

0 = Gi(z)

=
[
z −∆tnA

I
i,if

I(tIn,i, z)
]
−

[
yn + ∆tn

i−1∑
j=1

(
AEi,jf

E(tEn,j , zj) +AIi,jf
I(tIn,j , zj)

)]

if fI(t, y) is linear in y then we must solve a linear system for each zi,

else Gi is nonlinear, requiring an iterative solver – ARKode options
relevant to this work:

Newton: inexact or standard (depends on linear solver),

Scaled, preconditioned, GMRES; “matrix-free” available.

user-supplied to exploit linear system structure

user-supplied (new feature).

http://www.smu.edu
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Customized Vectors and Splittings

Unlike some frameworks that force data structures or algorithms on users,
SUNDIALS/ARKode easily leverages problem-specific implementations.

Vectors: both Tempest and HOMME-NH pre-allocate all vectors objects to be used
throughout a simulation at initialization.

“Taught” ARKode how to perform vector arithmetic directly on these structures.

Requested a sufficient number of preallocated vectors for ARKode temporaries.

Implemented a system for ARKode to “check out” and “check in” these
temporary vectors, in lieu of standard allocation/deallocation.

IMEX/HEVI Splittings:

Repurposed existing physics routines to provide the IMEX splitting(s) fE and fI .

Tempest also included preprocessor directives to explore alternate splittings by
moving terms between fE and fI .

http://www.smu.edu
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Customized Algebraic Solvers

Since HEVI splittings only include implicit coupling within each vertical column
(decoupled from other columns), each MPI task is decoupled.

When beginning this research, ARKode did not yet support custom nonlinear solvers,
so we focused on the linear solve (plan to upgrade these soon).

Tempest:

Block-banded systems on each MPI task

Direct factorization/solve: DGBTRF and DGBTRS

For non-HEVI splittings, this preconditions GMRES

HOMME-NH:

Tridiagonal systems for w on each MPI task

Direct factorization/solve: DGTTRF and DGTTRS

Post-process result for φ update

Unlike most IMEX methods, at large scales the implicit portions of these models are
nearly “free” (cost is dominated by explicit RHS MPI communication).

http://www.smu.edu
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Customized Norms and Tolerances

Accuracy/efficiency for both models hinged on the choice of norm and tolerances for
nonlinear and linear solvers.

ARKode utilizes a weighted root-mean-squared norm for error-like quantities:

‖v‖ =

(
1

N

N∑
i=1

w2
i v

2
i

)1/2

, wi =
1

εr|yi|+ εa

where y ∈ RN is the previous time-step solution, εr ∈ R and εa ∈ RN .

Newton iterations cease when estimated nonlinear residual norm < 0.1.

GMRES iterations stop when linear residual norm < 0.0005.

Tempest: εr = εa = 10−4, based on trial/error in comparisons against native solvers.

HOMME-NH: εr = 10−6, and εa =


10−5, for u and w components

0.1, for φ components,

1, for Θ components,

10−6, for ∂π
∂η

components
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Test problems (from 2012 Dynamical Core Model Intercomparison Project)

Both codes used two “standard” climate test problems:

Inertia Gravity Wave

Small temperature perturbation from equilibrium
on “small Earth” (1/125) – gravity wave
propagates around the globe.

Insignificant nonlinear effects; no need for
hyperviscosity or vertical remap

Used to assess temporal convergence and benefit
of higher-order methods

Baroclinic Instability

Small zonal velocity perturbation from equilibrium
sets off instability.

More significant nonlinear effects; stabilization
required (reduces overall accuracy to O(∆t)).

Measure surface pressure as proxy for overall error.

http://www.smu.edu
https://www.llnl.gov/
https://www.sandia.gov/
https://ucdavis.edu/
https://www.earthsystemcog.org/projects/dcmip-2012/
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Tempest Experiments [Gardner et al., GMD, 2018]

We investigated three complementary aspects of integration in Tempest:

1 Alternate IMEX splittings:

HEVI; HEVI-DT (explicit vertical continuity and thermo.)

IMEX-D (HEVI + implicit ρ); IMEX-DTE (IMEX-D + implicit θ)

2 Alternate Nonlinear solver options:

Full Newton solve

Linearly-implicit (only performs a single Newton iteration) –
“standard practice” in the field, but may not resolve nonlinearity

3 Performance of various Additive Runge–Kutta methods (21 total):

5 from Ascher, Ruuth & Spiteri (1997) – O
(
∆t2

)
→ O

(
∆t3

)
3 from Kennedy & Carpenter (2003) – O

(
∆t3

)
→ O

(
∆t5

)
1 from Giraldo et al. (2013) – O

(
∆t2

)
4 SSP from Pareschi & Russo (2005) – O

(
∆t2

)
→ O

(
∆t3

)
6 SSP from Higueras et al. (2006, 2009, 2014) – O

(
∆t2

)
→ O

(
∆t3

)
2 from Conde et al. (2017) – O

(
∆t3

)

http://www.smu.edu
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https://ucdavis.edu/


Reynolds, Gardner, Vogl, Steyer, Ullrich & Woodward 18/25

Model Methods Experiments Conclusions

Tempest Results [Gardner et al., GMD, 2018]

HEVI/IMEX splittings:

Stability ∝ implicitness: IMEX-DTE > IMEX-D > HEVI > HEVI-DT.

Horizontally implicit terms increase runtime by 25% → 60%.

Resulting IMEX-D cost between HEVI and HEVI-DT; HEVI was best overall.

Linearly-implicit (LI) solver vs Newton (N) solver:

LI solve sufficient for gravity wave (accurate to discretization error).

LI solve insufficient to resolve nonlinearity in baroclinic test at desired step sizes
(nonphysical w); 2→ 4 N iterations required to recover nonlinear effects.

ARK methods:

No benefit of high over low order (4-5 vs 2-3) at desired step sizes.

Most SSP methods show nonphysical vertical velocities for HEVI splittings;
others unstable except at small ∆t (likely due to instability along imaginary axis).

Best overall stability/accuracy from O
(
∆t3

)
methods by Ascher, Ruuth &

Spiteri (1997) and Kennedy & Carpenter (2003).

http://www.smu.edu
https://www.llnl.gov/
https://www.sandia.gov/
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HOMME-NH Experiments [Vogl et al., in prep]

Resolved to use a HEVI formulation and a full Newton solve, we then focused on
stability, accuracy and novel ARK methods:

1 Effects of post-processing applied to time-step solutions:

hyperviscosity

vertical remap (dynamic adjustment to vertical coordinate η)

2 Performance of various ARK methods (22 total), and one ERK method:

5 from Ascher, Ruuth & Spiteri (1997) – O
(
∆t2

)
→ O

(
∆t3

)
2 from Kennedy & Carpenter (2003) – O

(
∆t3

)
→ O

(
∆t4

)
2 from Conde et al. (2017) – O

(
∆t3

)
12 from Steyer et al. (in prep) – O

(
∆t2

)
→ O

(
∆t3

)
1 by R., from Vogl et al. (in prep) – O

(
∆t3

)
1 ERK method from Guerra & Ullrich (2016) – O

(
∆t3

)
Methods from Steyer, R., and Guerra & Ullrich are optimized to maximize linear
stability along imaginary axis.

http://www.smu.edu
https://www.llnl.gov/
https://www.sandia.gov/
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HOMME-NH Results (hyperviscosity & vertical remap) [Vogl et al., in prep]

Maximum relative θ error vs ∆t for gravity wave test
(top/bottom show without/with post-processing, resp.):

All ARK methods converge at analytical order to
reference accuracy when post-processing is disabled.

All methods reduce to first order when post-
processing is enabled.

Unfortunately, production runs rapidly go unstable
without stabilization.

However, higher-order methods still show improved
error at larger ∆t (desired production step sizes).
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HOMME-NH Results (ARK methods) [Vogl et al., in prep]

Measured the maximum relative surface pressure error, with accuracy tolerance
set by comparison against “trusted” results. Two questions:

A. What is the max. ∆t for each method to obtain solution within tolerance?

B. Which methods can run at the desired hydrostatic time step ∆t = 300s?
By how much do those methods exceed tolerance?

Question A on left, B on right (only best shown). WT is wall-clock (hr), Exc is
exceedance, IMKG (Steyer et al.), ARK (Kennedy & Carpenter), DBM (Vogl et al.):

Method ∆t ∆t
fI
, ∆t
fE

WT

IMKG243b 270 90,68 0.9
DBM453 270 68,54 1.1
ARK324 240 80,60 1.0
IMKG242b 240 120,60 0.9
ARK436 216 43,36 1.6

Method ∆t ∆t
fI
, ∆t
fE

WT Exc.

DBM453 300 75,60 1.0 3%
IMKG252b 300 150,60 0.8 61%
IMKG254a

b
300 75,60 1.0 61%

IMKG243b 270 90,68 0.9 55%
IMKG343a 270 90,68 0.9 55%

Methods tuned for stability on imaginary axis far outperform existing methods.

http://www.smu.edu
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Conclusions & Future Work

In summary:

Modular structure of ARKode/SUNDIALS allows use of problem-specific data
structures and solvers within high-order time integration.

Trivial to explore different ARK methods (just supply pairs of Butcher tables).

Simplified exploration of IMEX splittings and nonlinear solvers – for ‘optimal’
efficiency these should be modified together, but JFNK can ‘clean up’ initially.

Exploration can identify critical features for newly-derived methods.

Top ARK methods are newly-developed versions by Steyer and R. – IMKG for raw
speed; but DBM overall (stability & accuracy, without significant speed penalty)

Next steps:

Reconstruct ARKode interfaces in Tempest and HOMME-NH to allow
customized nonlinear solves (eliminate MPI communication in implicit solves).

Investigate hyperviscosity/remap within stage solves to retain high order.

Temporal adaptivity (current lack of a sufficient ‘ecosystem’ of embedded ARK
methods). Invent new “IMKG” and “DBM” methods with embeddings.

http://www.smu.edu
https://www.llnl.gov/
https://www.sandia.gov/
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