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Multiphysics simulations [Keyes et al., 2013]

Multiphysics simulations couple together different
physical models, either in the bulk or across
interfaces.

Climate simulations are a good example:

atmospheric simulations combine fluid
dynamics with local “physics” models for
chemistry, condensation, . . . , or

atmosphere may be coupled at interfaces to
myriad other processes (ocean, land/sea ice,
. . . ), each using distinct models.

[https://e3sm.org]

https://e3sm.org
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Multiphysics challenges [Keyes et al., 2013]

These combinations can challenge traditional numerical methods:

“Multirate” processes evolve on different time scales but prohibit analytical reformulation.

Stiff components disallow fully explicit methods.

Nonlinearity and insufficient differentiability challenge fully implicit methods.

Parallel scalability demands optimal algorithms – while robust/scalable algebraic solvers exist for
parts (e.g., FMM for particles, multigrid for diffusion), none are optimal for the whole.

Implicit-explicit methods may be used to treat stiffness; here we focus on the multiple time scale issue.
We consider a prototypical problem:

ẏ(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fS(t, y) contains the “slow” dynamics, naturally evolved with large steps H.

fF (t, y) contains the “fast” dynamics, that evolves with small steps h ≪ H.
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Multirate Infinitesimal (MRI) methods [Schlegel et al., 2009; Sandu, 2019; Fish, R., & Roberts, 2024]

MRI methods allow up to O
(
H6

)
approaches to “subcycle” multirate problems. Denoting yn ≈ y(tn),

a single explicit MRI step tn → tn +H proceeds as:

1 Let: Y1 = yn

2 For i = 2, ..., s:

1 Solve: v′i(τ) = Ci f
F (τ, vi(τ)) + ri(τ), for τ ∈ [τ0,i, τF,i] with vi(τ0,i) = v0,i.

2 Let: Yi = vi(τF,i).

3 Solve: ṽ′s(τ) = Cs f
F (τ, ṽs(τ)) + r̃s(τ), for τ ∈ [τ0,s, τF,s] with ṽs(τ0,s) = v0,s.

4 Let: yn+1 = Ys and ỹn+1 = ṽs(τF,s).

MRI methods are uniquely defined by: leading constant Ci, fast stage time intervals [τ0,i, τF,i], initial
conditions v0,i, forcing functions ri(τ), and embedding forcing function r̃s(τ).

ri(τ) and r̃s(τ) are typically constructed using linear combinations of
{
fS(τF,j , Yj)

}
, and propagate

information from the slow to the fast time scale.

ỹn+1 is an embedded solution with a different order of accuracy than yn+1.

https://www.sciencedirect.com/science/article/pii/S0377042708004147
https://epubs.siam.org/doi/10.1137/18M1205492
https://doi.org/10.1016/j.cam.2023.115534
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Single rate control [Gustafsson, 1991; Söderlind, 2006]

Traditional adaptivity controls local error, en = y(tn +Hn)− yn+1, assuming yn is exact,
adapting Hn to ensure εn := ∥en∥ ≤ 1 where the norm incorporates the user tolerances, among
other objectives.

The controller C typically depends on a few (Hn−k, εn−k) pairs, i.e.,

H̃ = C(Hn, εn, Hn−1, εn−1, . . . , p),

where p is the method order, i.e., εn = c(t)Hp+1, for some c(t) independent of H.

The simple I controller approximates c as piecewise constant, c = εn
hp+1 , to predict H̃:

1 = cH̃p+1 = εn
H̃p+1

Hp+1
⇔ H̃ =

H

ε
1/(p+1)
n

.

More advanced options exist, that typically use additional (Hn−k, εn−k) values to build
higher-degree piecewise polynomial approximations of the principal error function.

For multirate control, we thus require both a strategy to estimate local temporal error (Appendix), and
algorithms for selecting step sizes H and h.

http://portal.acm.org/citation.cfm?doid=210232.210242
https://www.sciencedirect.com/science/article/abs/pii/S0168927405000954
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MRI time step control – Decoupled (Dec) controllers

The simplest approach to MRI adaptivity is to use two decoupled single-rate controllers:

H̃ = CS(Hn, ε
S
n, Hn−1, ε

S
n−1, . . . , P ),

h̃ = CF (hn,m, εFn,m, hn,m−1, ε
F
n,m−1, . . . , p),

where (Hk, ε
S
k ) are the stepsize and local error estimates for time step k at the slow time scale, and

(hk,ℓ, ε
F
k,ℓ) are the stepsize and local error estimates for the fast substep ℓ within the slow step k.

CS and CF are independent of one another, so selection of H̃ and h̃ occurs independently.

We expect this to work well for problems with weakly coupled time scales.

Due to its decoupled nature, this trivially extends to an arbitrary number of time scales, allowing
adaptivity for so-called “telescopic” MRI methods.
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MRI time step control – Step-tolerance (H-Tol) controllers

For problems with more strongly coupled time scales, we may wish to request tighter accuracy from the
inner solver. When called over fast intervals [τ0,i, τF,i], we assume the accumulated errors satisfy

εFi = χ(t)Hn

(
reltolFn

)
,

where reltolFn is the relative tolerance requested of the inner solver, and χ(t) is independent of reltolFn .

This matches the single-rate controller assumption εn = c(t)hp+1, where χ(tn)Hn is c(t), reltolFn is h,
and p = 0. Thus any single-rate controller can adjust reltolFn between slow step attempts.

To construct an “H-Tol” controller, we require three separate single-rate adaptivity controllers:

CS,H – single-rate controller to adapt Hn within the slow integrator.

CS,Tol – single-rate controller to adapt reltolFn above.

CF – single rate controller to adapt hn,m within the fast integrator to achieve reltolFn .

This class of controllers also support telescopic multirate methods.
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MRI time step control – Coupled (H-h) controllers [Fish & R., SISC, 2023]

These extend the single-rate derivations [Gustafsson, 1994] by approximating both slow and fast principal
error functions using piecewise polynomials. We proposed four multirate controllers that adapt Hn and
Mn = Hn/hn (i.e., fast substeps are held constant over each slow step):

constant-constant: Hn+1 = Hn

(
εSn+1

)α
, Mn+1 = Mn

(
εSn+1

)β1
(
εFn+1

)β2 ,

linear-linear: Hn+1 = Hn

(
Hn

Hn−1

)(
εSn+1

)α1
(
εSn

)α2 ,

Mn+1 = Mn

(
Mn

Mn−1

)(
εSn+1

)β11
(
εSn

)β12
(
εFn+1

)β21
(
εFn

)β22 .

PIMR (a multirate extension of the PI single-rate controller):

Hn+1 = Hn

(
εSn+1

)α1
(
εSn

)α2

, Mn+1 = Mn

(
εSn+1

)β11
(
εSn

)β12
(
εFn+1

)β21
(
εFn

)β22

.

PIDMR (a multirate extension of the PID single-rate controller):

Hn+1 = Hn

(
εSn+1

)α1
(
εSn

)α2
(
εSn−1

)α3

,

Mn+1 = Mn

(
εSn+1

)β11
(
εSn

)β12
(
εSn−1

)β13
(
εFn+1

)β21
(
εFn

)β22
(
εFn−1

)β23

.

https://doi.org/10.1137/22M1479798
https://doi.org/10.1145/198429.198437
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Kværno-Prothero-Robinson (KPR) test problem

(
u′(t)
v′(t)

)
=

[
G e
e −1

]((
u2 − p− 2

)
/(2u)(

v2 − q − 2
)
/(2v)

)
+

(
p′(t)/(2u)
q′(t)/(2v)

)
, 0 ≤ t ≤ 5,

where p(t) = cos(t) and q(t) = cos(ωt(1 + e−(t−2)2)).

The analytical solution is u(t) =
√

2 + p(t) and v(t) =
√

2 + q(t).

Here:

e that determines the strength of coupling between the time scales,

G < 0 determines the stiffness at slow time scale,

w that determines the time-scale separation factor.

At right: analytical solutions with parameters G = −10, e = 1/10, ω = 5.
Top: solutions. Bottom: internal single-rate time steps.
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Embedded MRI methods

We test MRI adaptivity using embedded MRI methods:

MRI-GARK methods from [Sandu, 2019]:

Explicit MRI ERK22a, MRI ERK22b, MRI ERK33a, and MRI ERK45a methods (orders 2, 2, 3, 4);

Implicit MRI IRK21a, MRI ESDIRK34a, and MRI ESDIRK46a methods (orders 2, 3, 4);

the explicit, O
(
H2

)
MRI RALSTON2 MRI-GARK method from [Roberts, 2022];

IMEX-MRI-SR methods of order 2, 3, and 4 from [Fish, R., & Roberts, 2024]: MRISR21, MRISR32,
and MRISR43;

explicit MERK methods of orders 2, 3, 4, and 5 from [Luan, Chinomona, & R., 2020] with custom
embeddings: MERK21, MERK32, MERK43, and MERK54.

Each of the above methods include an embedding with order of accuracy one lower.

https://epubs.siam.org/doi/10.1137/18M1205492
https://epubs.siam.org/doi/10.1137/20M1386281
https://doi.org/10.1016/j.cam.2023.115534
https://epubs.siam.org/doi/10.1137/19M125621X
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MRI adaptive method accuracy

Detailed results regarding the accuracy obtained by each controller type and MRI method are provided
in the Appendix, where we compare the ability of each MRI method and controller to achieve the

target accuracy over all components l and time steps n: accuracy = max
n,l

∣∣∣∣ yn,l − yref,l(tn)

abstol+ reltol |yref,l(tn)|

∣∣∣∣.
Multirate factors ω = {5, 50, 250, 500}:

Both Dec and H-Tol achieve accuracy ratios ≲ 10 for all ω.

H-h had accuracy ≲ 10 for ω = 5 and reltol = 10−3, but struggled as ω increased.

reltol ranging from 10−3 down to 10−7:

Dec and H-Tol controllers also achieve solutions within ∼10x of the target across all reltol.

H-h accuracy ratios deteriorated as tolerances were tightened.

Low-order vs high-order MRI methods:

All controllers improved when using higher-order MRI methods.

H-Tol had ∼20% better accuracy than Dec, which was ≳ 100x better than H-h.

Most MRI methods performed similarly at each order, but there were outliers.
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MRI adaptive method cost

Detailed results regarding cost of each method shown above are provided in the Appendix. Highlights:

Number of slow time steps [assumed to be expensive]:

H-Tol controllers are ∼10% better efficiency than Dec.

Both H-Tol and Dec are ∼10x more efficient than H-h.

Number of fast time steps [assumed to be inexpensive]:

H-h controllers are ∼3x lower cost than Dec and H-Tol.

Dec controllers are ∼10% lower cost than H-Tol.

Number of rejected slow time steps:

Both H-Tol and Dec reject a very small fraction of slow steps, with H-Tol rejecting ∼20%
fewer than Dec.

H-h reject ∼10x more steps than both H-Tol and Dec (up to ∼20%).
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Conclusions and future work

Conclusions:

Both the Dec and H-Tol families show robust adaptive control across a wide range of: multirate
ratios (ω = 250 and 500; 5 and 50 were similar), relative tolerances (10−7 up to 10−3), and low
and high order embedded MRI methods.

Of the two, H-Tol had slightly better accuracy and computational efficiency.

However, H-h struggled to meet accuracy, and had significantly higher “slow” cost. This indicates
it may artificially constrain the step size ratio Mn = Hn/hn.

Note: all of these results were performed using the ARKODE solver from the SUNDIALS library. Its
newest release (Dec. 2024) includes both Dec and H-Tol controller families.

We are currently extending these results to additional multirate applications:

We have similar results for a stiff Brusselator test (will be included in forthcoming paper).

Large-scale application codes, including Perturbo (solid state physics) and BOUT++ (fusion).

https://github.com/LLNL/sundials
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Thank you for your time and attention!

For more information on any of our new methods research, please see my webpage:
https://people.smu.edu/dreynolds.

For more information on SUNDIALS, please see our

project page on Github: https://github.com/llnl/sundials

documentation: https://sundials.readthedocs.io

For anything else, send me an email: reynolds@smu.edu

I will soon be advertising to hire a postdoc – if you are interested, please let me know!

This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research (ASCR) via the Frameworks, Algorithms, and Software Technologies for
Mathematics Institute Scientific Discovery through Advanced Computing (SciDAC) program.

https://people.smu.edu/dreynolds
https://github.com/llnl/sundials
https://sundials.readthedocs.io
mailto:reynolds@smu.edu
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MRI temporal error estimation – εSn and εFn

Slow error may be estimated as usual for embedded methods, εSn = ∥yn − ỹn∥, but non-intrusive
estimates for εF are more challenging. We consider four strategies:

Three assume that at each sub-step tn,m the fast integrator computes a local error estimate,
εFn,m, and itself is temporally adaptive with relative tolerance, reltolF . We accumulate these via:

εFn,max = reltolF max
m∈M

εFn,m “Maximum accumulation,”

εFn,add = reltolF
∑
m∈M

εFn,m “Additive accumulation,” or

εFn,avg = εFn,add/|M | “Average accumulation,”

where M is the set of all steps since the fast error accumulator has been reset.

The fourth uses fixed fast steps h and kh to compute yF
h and yF

kh, estimating

εFn,dbl =
∥yF

h − yF
kh∥

|kp − 1| “Double-step accumulation,”

where p is the global order of accuracy for the fast method.
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Accumulated error comparisons

We partition the integration interval into subintervals, t0 < t1 < . . . < t20 = tf , and evolve over each
[tk, tk+1], with the initial condition reset to the reference solution yref (tk). We compare the estimates
εFX against the “true” value of the fast error, εFref (tk+1) via the ratio

ratioX(tk+1) =
εFref (tk+1)

εFX(tk+1)
,

Left: adaptive fast
integration.

Right: fixed-step fast
integration.

All except Additive report
accumulated error within
∼10x of actual across
tolerances/steps.
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MRI adaptive accuracy – second-order methods

We compare the ability of each MRI method and controller to achieve the target accuracy over all

components l and time steps n: accuracy = max
n,l

∣∣∣∣ yn,l − yref,l(tn)

abstol+ reltol |yref,l(tn)|

∣∣∣∣.
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MRI adaptive accuracy – third-order methods

We compare the ability of each MRI method and controller to achieve the target accuracy over all

components l and time steps n: accuracy = max
n,l

∣∣∣∣ yn,l − yref,l(tn)

abstol+ reltol |yref,l(tn)|

∣∣∣∣.
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MRI adaptive accuracy – higher-order methods

We compare the ability of each MRI method and controller to achieve the target accuracy over all

components l and time steps n: accuracy = max
n,l

∣∣∣∣ yn,l − yref,l(tn)

abstol+ reltol |yref,l(tn)|

∣∣∣∣.
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MRI adaptive cost – second-order methods

We compare the numbers of slow and fast steps (normalized to MRI RALSTON2 with Dec-I controller),
and slow failure rate across a range of tolerances.
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MRI adaptive cost – third-order methods

We compare the numbers of slow and fast steps (normalized to MRI ERK33a with Dec-I controller),
and slow failure rate across a range of tolerances.
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Appendix

MRI adaptive cost – higher-order methods

We compare the numbers of slow and fast steps (normalized to MRI ERK45a with Dec-I controller),
and slow failure rate across a range of tolerances.
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Appendix

MRI adaptive step histories

We plot the slow and fast step size histories for a few adaptivity controller types at reltol = 10−5,
listing the total numbers of slow and fast time steps, and ability to achieve the target accuracy.
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