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Multiphysics Scientific Simulations

In recent decades computation has rapidly assumed its role as the third pillar of the scientific method [Vardi,

Commun. ACM, 53(9):5, 2010]:

Simulation complexity has evolved from simplistic calculations of only 1 or 2 basic equations, to massive
models that combine vast arrays of processes.

Early algorithms could be analyzed using standard techniques, but mathematics has not kept up with the
fast pace of scientific simulation development.

Presently, many numerical analysts construct elegant solvers for models of limited practical use, while
computational scientists “solve” highly-realistic systems using ad hoc methods with questionable reliability.

The purpose of this mini-symposium is to discuss recent advances in numerical methods that aim to bridge this
gap between mathematical theory and computing practice.

In the next few slides, I’ll present a few of the mutiphysics applications that I have worked on in recent years, in
order to illustrate some of the challenges they present for numerical methods.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://dl.acm.org/citation.cfm?doid=1810891.1810892
https://dl.acm.org/citation.cfm?doid=1810891.1810892
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Climate – Nonhydrostatic Atmospheric Models

Increased computational power enables spatial resolutions beyond
the hydrostatic limit.

Nonhydrostatic models consider the 3D compressible Navier Stokes
equations; these support acoustic (sound) waves.

Acoustic waves have a negligible effect on climate, but travel much
faster than convection (343 m/s vs 100 m/s horizontal and 1 m/s
vertical), leading to overly-restrictive explicit stability restrictions.

To overcome this stiffness, nonhydrostatic models traditionally utilize split-explicit, implicit-explicit, or
fully implicit time integration.

Additionally, climate “dycores” are coupled to myriad other processes (ocean, land/sea ice, . . . ), each
evolving on significantly different time scales.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Cosmic Reionization – The Origins of the Universe

After the Big Bang, primordial matter (96% dark matter,
2.92% H, 1% He) was strewn throughout the universe.

Gravitational attraction condensed this into the “cosmic web,”
the large-scale structure that connects/creates galaxies.

When pressure is sufficient, stars ‘ignite’ and emit radiation.

When stars collapse, supernovae spread heavier species.

[http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118]

Modern cosmological models combine a myriad of physical processes:

Models for cosmological expansion of the universe.

Particle motion for cold dark matter.

Compressible Euler equations for hydrodynamic motion.

Multi-frequency radiation transport.

Multi-species chemical ionization.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118
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Fusion Plasma Simulations

Large-scale, nonlinear simulation of fusion plasmas is critical for the design of next-generation confinement
devices.

Fusion easy to achieve but difficult to stabilize, as needed to
increase yield and protect device.

Linear modes present in fluid models are typically
well-controlled.

Most current work focuses on disruptions due to nonlinear
instabilities and kinetic effects.

Turbulence in the sharp edge disrupts the core, but is difficult

to simulate:

must accurately couple ions and electrons in high
dimensions: x ∈ Rd, v ∈ Rd, t ∈ R; d = {2, 3}
mass/velocity differences result in 100×
spatial/temporal scale separation.

MGK+Partnership+(mgkscidac.org)

• Achieve&profound&scientific&
breakthroughs&on&‘frontier’&
multiscale turbulent&transport&
problems

• Develop&practical&new&
methods&to&bring&these&
problems&within&the&scope&of&
whole&device&modeling

• Ultimately:&integrate&with&
AToM framework

mgkscidac.orgGENE gyrokinetic simulation of core turbulence

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Multiphysics Challenges

Multiphysics problems exhibit key characteristics that challenge traditional numerical methods:

“Multirate” structure: different processes evolve on distinct time scales, but these are too close to
analytically reformulate (e.g., via steady-state approximation).

The existence of stiff components prohibits fully explicit methods.

Nonlinearity and insufficient differentiability challenge fully implicit methods.

“Multiscale” structure: some spatial regions may be well-modeled via coarse meshes, while others require
high resolution.

Extreme parallel scalability demands optimal algorithms. While robust and scalable algebraic solvers exist
for some pieces (e.g., FMM for particles, multigrid for diffusion), none are optimal for the full problem.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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“Classical” Time Integrators (and their deficiencies)

Historically, IVP research has focused on two simple problem types:

y′(t) = f(t, y(t)), y(t0) = y0 [ODE]

0 = F (t, y(t), y′(t)), y(t0) = y0, y′(t0) = y′0 [DAE]

Corresponding solvers thus enforced overly-rigid standards:

Treat all components implicitly or explicitly, without IMEX flexibility.

Fully explicit: “stiff” components require overly-small time steps for stability.

Fully implicit: scalable/robust algebraic solvers difficult for highly nonlinear or nonsmooth terms.

Treat all components using the same time step size, without multirate flexibility.

If time step is set by ‘fastest’ process, ‘slow’ operators may be called too frequently (inefficient).

If time step is set by ‘slowest’ process, then ‘fast’ operators must be implicit to remain stable, but
their accuracy can be lost.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Ad Hoc Algorithms Pervade Scientific Computing Applications

On the other hand, practitioners frequently “split” their problems apart based on the physical
operators under consideration, e.g.,

y′(t) = f1(t, y) + · · · + fm(t, y), y(t0) = y0.

The simplest approaches may then apply a basic “Lie-Trotter” splitting:

y′1(t) = f1 (t, y1) , t0 < t < t0 + h, y1(t0) = y0,

y′2(t) = f2 (t, y2) , t0 < t < t0 + h, y2(t0) = y1(t0 + h),

...

y′m(t) = fm (t, ym) , t0 < t < t0 + h, ym(t0) = ym−1(t0 + h),

and the time-evolved solution is taken to be y(t0 + h) = ym(t0 + h).

Here, each component may be tackled independently (or even subcycled) using, e.g., something from
“Numerical Recipes.”

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://www.amazon.com/exec/obidos/ASIN/052143064X/fortran-wiki-20
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Ad Hoc Algorithms II

Some applications attempt to achieve higher order by instead applying a “Strang-Marchuk” splitting:

y′1(t) = f1 (t, y1) , t0 < t < t0 + h
2
, y1(t0) = y0,

...

y′m−1(t) = fm−1 (t, ym−1) , t0 < t < t0 + h
2
, ym−1(t0) = ym−2(t0 + h

2
),

y′m(t) = fm (t, ym) , t0 < t < t0 + h, ym(t0) = ym−1(t0 + h
2
),

y′m+1(t) = fm−1 (t, ym+1) , t0 + h
2
< t < t0 + h, ym+1(t0 + h

2
) = ym(t0 + h),

...

y′2m(t) = f1 (t, y2m) , t0 + h
2
< t < t0 + h, y2m(t0 + h

2
) = y2m−1(t0 + h),

Unfortunately, both approaches suffer from:

Low accuracy – Lie-Trotter is O(h) and Strang-Marchuk is O
(
h2
)
; extrapolation can improve this but at

significant cost [Ropp, Shadid & Ober 2005].

Poor/unknown stability – even when each part utilizes a ‘stable’ step size, the combined problem may
admit unstable modes [Estep et al., 2007].

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Filling this ‘Disconnect’ between Mathematical Theory and Multiphysics Practice

In recent years, many researchers have worked to construct flexible time integration methods to
improve temporal integration of multiphysics systems.

Goals include:

Stability/accuracy for each component, as well as inter-physics couplings.

Custom/flexible time step sizes for distinct components.

Robust temporal error estimation & adaptivity of step size(s).

Built-in support for spatial adaptivity.

Ability to apply optimally efficient and scalable solver algorithms.

Support for experimentation and testing between methods and solution algorithms.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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IMEX Methods – Matching Stiff Solvers With Stiff Operators

IMEX methods allow us to treat only the stiff terms using implicit methods. For example, temporally-adaptive,
single-rate, Additive Runge–Kutta methods [Ascher et al. 1997; Araújo et al. 1997; Kennedy & Carpenter 2003; . . . ] are
formulated for split problems:

y′(t) = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

where fE(t, y) contains the nonstiff terms and fI(t, y) contains the stiff terms.

These combine two s-stage RK methods; denoting hn = tn+1 − tn, tEn,j = tn + cEj hn, tIn,j = tn + cIjhn:

zi = yn + hn

i−1∑
j=1

aEi,jf
E(tEn,j , zj) + hn

i∑
j=1

aIi,jf
I(tIn,j , zj), i = 1, . . . , s,

yn+1 = yn + hn

s∑
j=1

[
bEj f

E(tEn,j , zj) + bIjf
I(tIn,j , zj)

]
(solution)

ỹn+1 = yn + hn

s∑
j=1

[
b̃Ej f

E(tEn,j , zj) + b̃Ijf
I(tIn,j , zj)

]
(embedding)

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Exponential Methods

Exponential integrators analytically solve a subset of the physics. For example, exponential Rosenbrock methods
[Hochbruch et al., 2009; Luan & Ostermann, 2014; . . . ] consider a specific additive splitting:

y′(t) = f(y) = J (y)y +N (y), t ∈ [t0, tf ], y(t0) = y0,

J (y) ≡ ∂f(y)
∂y

is assumed stiff, and N (y) ≡ f(y)− J (y)y contains any remaining nonlinearities [assumed

nonstiff]. Using the variation-of-constants formula we may analytically solve over t ∈ [tn, tn + h]:

y(t) = e (t−tn)J (yn)y(tn) +

∫ t

0
e (t−τ)J (yn)N (u(tn + τ))dτ .

By approximating the integral via quadrature, an s-stage ExpRB method may be written:

zi = yn + cihϕ1(cihJ (yn))f(yn) + h

i−1∑
j=2

aij(hJ (yn))(N (zj)−N (yn)),

yn+1 = yn + hϕ1(hJ (yn))f(yn) + h
s∑
i=2

bi(hJ (yn))(N (zi)−N (yn))

where z1 = yn. Efficiency/scalability hinge on evaluation of matrix ϕk functions, that comprise aij and bi.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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‘Infinitesimal’ Multirate Methods (MIS, MRI, . . . ) [Schlegel et al. 2009; Sandu 2019; Bauer & Knoth 2019; . . . ]

The ‘infinitesimal’ family of multirate methods allow a higher-order approach to subcycling, through more
tightly coupling the ‘fast’ and ‘slow’ operators. Consider the splitting

y′(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fS(t, y) contains the “slow” dynamics, integrated with time step H.

fF (t, y) contains the “fast” dynamics, integrated with time step h� H

The slow component is integrated using an “outer” RK method, while the fast component is advanced
between slow stages by solving a modified ODE with a subcycled “inner” RK method:

v′(t) = fF (t, v) +

i∑
j=1

α(t)fS (tn,j , zj), tn,i−1 < t < tn,i, v(tn,i−1) := z
{slow}
i−1 , z

{slow}
i := v(tn,i).

Historically limited to O
(
h3
)

accuracy, but recent work has resulted in significant improvements.

Highly efficient – many require only a single traversal of [tn, tn+1] to achieve high order.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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MS 316 – Friday, March 5, 8:30-10:10 am

Daniel R. Reynolds: An Introduction to Multirate Methods for Multiphysics Applications

Oswald Knoth: How to Obtain Order Conditions for Multirate Infinitesimal Methods (MIS)

Steven Roberts: A New Multirate Time-Stepping Strategy for ODE Systems Equipped with a
Surrogate Model

Rujeko Chinomona: High-Order Implicit-Explicit Multirate Infinitesimal Methods for Multiphysics
Applications

Tobias Bauer: Multirate Runge-Kutta Methods for Idealized Coupled Atmosphere-Ocean
Simulations

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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MS 347 – Friday, March 5, 10:20 am - 12:00 pm

Vu Thai Luan: Multirate Exponential Rosenbrock Methods

David J. Gardner: Multirate Time Integrators in Sundials

Valentin Dallerit: High-Order Numerical Solutions to the Nonlinear Shallow-Water Equations on
the Rotated Cubed-Sphere Grid

David Shirokoff: Semi-Implicit (ImEx) Schemes for the Dispersive Shallow Water Equations

Giacomo Rosilho De Souza: Multirate Stabilized Explicit Methods based on a Modified Equation
for Problems with Multiple Scales

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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