0000	000	000	00

An Introduction to Multirate Methods for Multiphysics Applications

Daniel R. Reynolds

reynolds@smu.edu

Department of Mathematics, Southern Methodist University

SIAM Conference on Computational Science and Engineering 5 March 2021

1/15

Multiphysics Applications		
Multiphysics Scientific Simula	ntions	

In recent decades computation has rapidly assumed its role as the third pillar of the scientific method [Vardi, *Commun. ACM*, 53(9):5, 2010]:

- Simulation complexity has evolved from simplistic calculations of only 1 or 2 basic equations, to massive models that combine vast arrays of processes.
- Early algorithms could be analyzed using standard techniques, but mathematics has not kept up with the fast pace of scientific simulation development.
- Presently, many numerical analysts construct elegant solvers for models of limited practical use, while computational scientists "solve" highly-realistic systems using *ad hoc* methods with questionable reliability.

The purpose of this mini-symposium is to discuss recent advances in numerical methods that aim to bridge this gap between mathematical theory and computing practice.

In the next few slides, I'll present a few of the mutiphysics applications that I have worked on in recent years, in order to illustrate some of the challenges they present for numerical methods.

Multiphysics Applications		
● 000		
Climate – Nonhydrost	atic Atmospheric Models	

- Increased computational power enables spatial resolutions beyond the hydrostatic limit.
- Nonhydrostatic models consider the 3D compressible Navier Stokes equations; these support acoustic (sound) waves.
- Acoustic waves have a negligible effect on climate, but travel much faster than convection (343 m/s vs 100 m/s horizontal and 1 m/s vertical), leading to overly-restrictive explicit stability restrictions.

- To overcome this stiffness, nonhydrostatic models traditionally utilize split-explicit, implicit-explicit, or fully implicit time integration.
- Additionally, climate "dycores" are coupled to myriad other processes (ocean, land/sea ice, ...), each evolving on significantly different time scales.

Multiphysics Applications		
0000		
Constant Data instant		

Cosmic Reionization – The Origins of the Universe

- After the Big Bang, primordial matter (96% dark matter, 2.92% H, 1% He) was strewn throughout the universe.
- Gravitational attraction condensed this into the "cosmic web," the large-scale structure that connects/creates galaxies.
- When pressure is sufficient, stars 'ignite' and emit radiation.
- When stars collapse, supernovae spread heavier species.

Modern cosmological models combine a myriad of physical processes:

- Models for cosmological expansion of the universe.
- Particle motion for cold dark matter.
- Compressible Euler equations for hydrodynamic motion.
- Multi-frequency radiation transport.
- Multi-species chemical ionization.

[http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118]

Multiphysics Applications		
0000		
Fusion Plasma Simulations		

Large-scale, nonlinear simulation of fusion plasmas is critical for the design of next-generation confinement devices

- Fusion easy to achieve but difficult to stabilize, as needed to increase yield and protect device.
- Linear modes present in fluid models are typically well-controlled
- Most current work focuses on disruptions due to nonlinear instabilities and kinetic effects
- Turbulence in the sharp edge disrupts the core, but is difficult to simulate.
 - must accurately couple ions and electrons in high dimensions: $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{v} \in \mathbb{R}^d$, $t \in \mathbb{R}$; $d = \{2, 3\}$
 - mass/velocity differences result in $100 \times$ spatial/temporal scale separation.

GENE gyrokinetic simulation of core turbulence

Multiphysics Applications		
0000		
Multiphysics Challenges		

Multiphysics problems exhibit key characteristics that challenge traditional numerical methods:

- "Multirate" structure: different processes evolve on distinct time scales, but these are too close to analytically reformulate (e.g., via steady-state approximation).
- The existence of stiff components prohibits fully explicit methods.
- Nonlinearity and insufficient differentiability challenge fully implicit methods.
- "Multiscale" structure: some spatial regions may be well-modeled via coarse meshes, while others require high resolution.
- Extreme parallel scalability demands optimal algorithms. While robust and scalable algebraic solvers exist for some pieces (e.g., FMM for particles, multigrid for diffusion), none are optimal for the full problem.

	Initial Schemes	
	● 00	
"Classical" Time Integrators ((and their deficiencies)	

Historically, IVP research has focused on two simple problem types:

$$\begin{aligned} y'(t) &= f(t, y(t)), & y(t_0) = y_0 & \text{[ODE]} \\ 0 &= F(t, y(t), y'(t)), & y(t_0) = y_0, & y'(t_0) = y'_0 & \text{[DAE]} \end{aligned}$$

Corresponding solvers thus enforced overly-rigid standards:

2

- Treat all components implicitly or explicitly, without IMEX flexibility.
 - Fully explicit: "stiff" components require overly-small time steps for stability.
 - Fully implicit: scalable/robust algebraic solvers difficult for highly nonlinear or nonsmooth terms.
- Treat all components using the same time step size, without multirate flexibility.
 - If time step is set by 'fastest' process, 'slow' operators may be called too frequently (inefficient).
 - If time step is set by 'slowest' process, then 'fast' operators must be implicit to remain stable, but their accuracy can be lost.

	Initial Schemes		
	000		
Ad Hoc Algorithms F	Pervade Scientific Comput	ing Applications	

On the other hand, practitioners frequently "split" their problems apart based on the physical operators under consideration, e.g.,

$$y'(t) = f_1(t,y) + \cdots + f_m(t,y), \quad y(t_0) = y_0.$$

The simplest approaches may then apply a basic "Lie-Trotter" splitting:

$$y'_{1}(t) = f_{1}(t, y_{1}), \qquad t_{0} < t < t_{0} + h, \qquad y_{1}(t_{0}) = y_{0},$$

$$y'_{2}(t) = f_{2}(t, y_{2}), \qquad t_{0} < t < t_{0} + h, \qquad y_{2}(t_{0}) = y_{1}(t_{0} + h),$$

$$\vdots$$

 $y'_{m}(t) = f_{m}(t, y_{m}), \quad t_{0} < t < t_{0} + h, \quad y_{m}(t_{0}) = y_{m-1}(t_{0} + h),$

and the time-evolved solution is taken to be $y(t_0 + h) = y_m(t_0 + h)$.

Here, each component may be tackled independently (or even subcycled) using, e.g., something from "Numerical Recipes."

	Initial Schemes	
	000	
Ad Hoc Algorithms II		

Some applications attempt to achieve higher order by instead applying a "Strang-Marchuk" splitting:

$$y'_1(t) = f_1(t, y_1),$$
 $t_0 < t < t_0 + \frac{h}{2},$ $y_1(t_0) = y_0,$

$$y'_{m-1}(t) = f_{m-1}(t, y_{m-1}), \qquad t_0 < t < t_0 + \frac{h}{2}, \qquad y_{m-1}(t_0) = y_{m-2}(t_0 + \frac{h}{2}),$$

$$y'_m(t) = f_m(t, y_m), \qquad t_0 < t < t_0 + h, \qquad y_m(t_0) = y_{m-1}(t_0 + \frac{h}{2}),$$

$$y'_{m+1}(t) = f_{m-1}(t, y_{m+1}), \quad t_0 + \frac{h}{2} < t < t_0 + h, \quad y_{m+1}(t_0 + \frac{h}{2}) = y_m(t_0 + h),$$

$$y_{2m}'(t) = f_1\left(t, y_{2m}\right), \qquad \quad t_0 + \frac{h}{2} < t < t_0 + h, \qquad y_{2m}(t_0 + \frac{h}{2}) = y_{2m-1}(t_0 + h),$$

Unfortunately, both approaches suffer from:

- Low accuracy Lie-Trotter is O(h) and Strang-Marchuk is $O(h^2)$; extrapolation can improve this but at significant cost [Ropp, Shadid & Ober 2005].
- Poor/unknown stability even when each part utilizes a 'stable' step size, the combined problem may admit unstable modes [Estep et al., 2007].

		Modern Approaches	
Filling this 'Disconnect'	between Mathematical	Theory and Multiphysics P	ractice

In recent years, many researchers have worked to construct *flexible* time integration methods to improve temporal integration of multiphysics systems.

Goals include:

- Stability/accuracy for each component, as well as inter-physics couplings.
- Custom/flexible time step sizes for distinct components.
- Robust temporal error estimation & adaptivity of step size(s).
- Built-in support for spatial adaptivity.
- Ability to apply optimally efficient and scalable solver algorithms.
- Support for experimentation and testing between methods and solution algorithms.

		Modern Approaches	
		000	
IMEX Methods – Ma	tching Stiff Solvers With	Stiff Operators	

IMEX methods allow us to treat only the stiff terms using implicit methods. For example, temporally-adaptive, single-rate, Additive Runge–Kutta methods [Ascher et al. 1997; Araújo et al. 1997; Kennedy & Carpenter 2003; …] are formulated for split problems:

$$y'(t) = f^{E}(t, y) + f^{I}(t, y), \quad t \in [t_0, t_f], \quad y(t_0) = y_0,$$

where $f^{E}(t, y)$ contains the nonstiff terms and $f^{I}(t, y)$ contains the stiff terms.

1

These combine two s-stage RK methods; denoting $h_n = t_{n+1} - t_n$, $t_{n,j}^E = t_n + c_j^E h_n$, $t_{n,j}^I = t_n + c_j^I h_n$:

$$z_{i} = y_{n} + h_{n} \sum_{j=1}^{i-1} a_{i,j}^{E} f^{E}(t_{n,j}^{E}, z_{j}) + h_{n} \sum_{j=1}^{i} a_{i,j}^{I} f^{I}(t_{n,j}^{I}, z_{j}), \quad i = 1, \dots, s,$$

$$y_{n+1} = y_{n} + h_{n} \sum_{j=1}^{s} \left[b_{j}^{E} f^{E}(t_{n,j}^{E}, z_{j}) + b_{j}^{I} f^{I}(t_{n,j}^{I}, z_{j}) \right] \quad \text{(solution)}$$

$$\tilde{y}_{n+1} = y_{n} + h_{n} \sum_{j=1}^{s} \left[\tilde{b}_{j}^{E} f^{E}(t_{n,j}^{E}, z_{j}) + \tilde{b}_{j}^{I} f^{I}(t_{n,j}^{I}, z_{j}) \right] \quad \text{(embedding)}$$

	Modern Approaches	
	000	
Exponential Methods		

Exponential integrators analytically solve a subset of the physics. For example, exponential Rosenbrock methods [Hochbruch et al., 2009; Luan & Ostermann, 2014; ...] consider a specific additive splitting:

$$y'(t) = f(y) = \mathcal{J}(y)y + \mathcal{N}(y), \quad t \in [t_0, t_f], \quad y(t_0) = y_0,$$

 $\mathcal{J}(y) \equiv \frac{\partial f(y)}{\partial y}$ is assumed stiff, and $\mathcal{N}(y) \equiv f(y) - \mathcal{J}(y)y$ contains any remaining nonlinearities [assumed nonstiff]. Using the variation-of-constants formula we may analytically solve over $t \in [t_n, t_n + h]$:

$$y(t) = e^{(t-t_n)\mathcal{J}(y_n)}y(t_n) + \int_0^t e^{(t-\tau)\mathcal{J}(y_n)}\mathcal{N}(u(t_n+\tau))d\tau.$$

By approximating the integral via quadrature, an *s*-stage ExpRB method may be written:

$$z_i = y_n + c_i h \varphi_1(c_i h \mathcal{J}(y_n)) f(y_n) + h \sum_{j=2}^{i-1} a_{ij}(h \mathcal{J}(y_n)) (\mathcal{N}(z_j) - \mathcal{N}(y_n))$$
$$y_{n+1} = y_n + h \varphi_1(h \mathcal{J}(y_n)) f(y_n) + h \sum_{i=2}^{s} b_i(h \mathcal{J}(y_n)) (\mathcal{N}(z_i) - \mathcal{N}(y_n))$$

where $z_1 = y_n$. Efficiency/scalability hinge on evaluation of matrix φ_k functions, that comprise a_{ij} and b_i .

		Modern Approaches	
		000	
'Infinitesimal'	Multirate Methods (MIS, MRI,)	[Schlegel et al. 2009; Sandu 20	019; Bauer & Knoth 2019;]

The 'infinitesimal' family of multirate methods allow a higher-order approach to subcycling, through more tightly coupling the 'fast' and 'slow' operators. Consider the splitting

$$y'(t) = f^{S}(t, y) + f^{F}(t, y), \quad t \in [t_0, t_f], \quad y(t_0) = y_0.$$

- $f^{S}(t, y)$ contains the "slow" dynamics, integrated with time step H.
- $f^F(t,y)$ contains the "fast" dynamics, integrated with time step $h \ll H$
- The slow component is integrated using an "outer" RK method, while the fast component is advanced between slow stages by solving a modified ODE with a subcycled "inner" RK method:

$$v'(t) = f^F(t, v) + \sum_{j=1}^{i} \alpha(t) f^S(t_{n,j}, z_j), \quad t_{n,i-1} < t < t_{n,i}, \quad v(t_{n,i-1}) := z_{i-1}^{\{slow\}}, \quad z_i^{\{slow\}} := v(t_{n,i}).$$

- Historically limited to $\mathcal{O}(h^3)$ accuracy, but recent work has resulted in *significant* improvements.
- Highly efficient many require only a single traversal of $[t_n, t_{n+1}]$ to achieve high order.

		Minisymposium Topics
		•0
MS 316 - Friday, March 5, 8:3	30-10:10 am	

- Daniel R. Reynolds: An Introduction to Multirate Methods for Multiphysics Applications
- Oswald Knoth: How to Obtain Order Conditions for Multirate Infinitesimal Methods (MIS)
- Steven Roberts: A New Multirate Time-Stepping Strategy for ODE Systems Equipped with a Surrogate Model
- Rujeko Chinomona: High-Order Implicit-Explicit Multirate Infinitesimal Methods for Multiphysics Applications
- Tobias Bauer: Multirate Runge-Kutta Methods for Idealized Coupled Atmosphere-Ocean Simulations

		Minisymposium Topics
		00
MS 347 – Friday, March 5, 10):20 am - 12:00 pm	

- Vu Thai Luan: Multirate Exponential Rosenbrock Methods
- David J. Gardner: Multirate Time Integrators in Sundials
- Valentin Dallerit: *High-Order Numerical Solutions to the Nonlinear Shallow-Water Equations on the Rotated Cubed-Sphere Grid*
- David Shirokoff: Semi-Implicit (ImEx) Schemes for the Dispersive Shallow Water Equations
- Giacomo Rosilho De Souza: Multirate Stabilized Explicit Methods based on a Modified Equation for Problems with Multiple Scales

