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Multiphysics Problems

“Multiphysics” problems typically involve a variety of interacting processes:

System of components coupled in the bulk [cosmology, combustion]

System of components coupled across interfaces [climate, tokamak fusion]

Multiphysics simulation challenges include:

Multirate processes, but too close to analytically reformulate.

Optimal solvers may exist for some pieces, but not for the whole.

Mixing of stiff/nonstiff processes, a challenge for standard algorithms.

Historical approaches rely on lowest-order time step splittings, may suffer from:

Low accuracy – typically O(h)-accurate; symmetrization/extrapolation
may improve this but at significant cost [Ropp, Shadid & Ober 2005].

Poor/unknown stability – even when each part utilizes a ’stable’ step size,
the combined problem may admit unstable modes [Estep et al., 2007].
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Need for Flexible Time Integration Libraries

Multiphysics time integration needs:

Stability/accuracy for each component, as well as inter-physics couplings

Custom/flexible step sizes for distinct components

Robust temporal error estimation & adaptivity of step size(s)

Built-in support for spatial adaptivity

Ability to apply optimal solver algorithms for individual components

Support for testing a variety of methods and solution algorithms

Legacy software frameworks enforce overly-rigid standards on applications:

Fully implicit or fully explicit, without ImEx flexibility.

Inflexible data structures for vectors, matrices, (non)linear solvers.

Hard-coded parameters – good for most problems, but rarely optimal.
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Additive Runge–Kutta (ARK) Methods [Ascher et al. 1997; Araújo et al. 1997; . . . ]

ARKode was initially designed to implement adaptive ARK methods for initial value
problems (IVPs), supporting up to two split components: explicit and implicit,

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

M is any nonsingular linear operator (mass matrix, typically M = I),

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

Combine two s-stage RK methods; denoting t∗n,j = tn + c∗jhn, hn = tn+1 − tn:

Mzi = Myn + hn

i−1∑
j=1

AE
i,jf

E(tEn,j , zj) + hn

i∑
j=1

AI
i,jf

I(tIn,j , zj), i = 1, . . . , s,

Myn+1 = Myn + hn

s∑
j=1

[
bEj fE(tEn,j , zj) + bIjf

I(tIn,j , zj)
]

(solution)

Mỹn+1 = Myn + hn

s∑
j=1

[
b̃Ej fE(tEn,j , zj) + b̃Ijf

I(tIn,j , zj)
]

(embedding)
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Solving each stage zi, i = 1, . . . , s

Each stage is implicitly defined via a root-finding problem:

0 = Gi(z)

=Mz −Myn − hn

[
AI

i,if
I(tIn,i, z) +

i−1∑
j=1

(
AE

i,jf
E(tEn,j , zj) +AI

i,jf
I(tIn,j , zj)

)]

if fI(t, y) is linear in y then we must solve a linear system for each zi,

else Gi is nonlinear, requiring an iterative solver – options include

modified Newton,

inexact Newton,

Anderson-accelerated fixed point,

user-supplied.
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Linear Solvers and Vector Data Structures

Linear solver options:

Direct – dense/band/sparse solvers (incl. LAPACK, KLU & SuperLU)

Krylov – GMRES, FGMRES, BiCGStab, TFQMR or PCG

support user-supplied preconditioning (left/right/both)

support residual/solution scaling for “unit-aware” stopping criteria

support “matrix-free” methods through approximation of product Jv,
where J ≡ ∂

∂y
fI(t, y)

External solvers may be “plugged in” by providing a SUNLinearSolver

implementation

All solvers (except for direct linear) formulated via generic vector operations:

Numerous supplied vector implementations: serial, MPI, OpenMP, PETSc,
hypre, CUDA, Raja, Trilinos, . . .

Application-specific vectors may be supplied
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ARKode Flexibility Enhancements

Additionally, ARKode includes enhancements for multi-physics codes, including:

Variety of built-in RK tables; supports user-supplied

Variety of built-in adaptivity functions; supports user-supplied

Variety of built-in implicit predictor algorithms

Ability to specify that problem is linearly implicit

Ability to resize data structures based on changing IVP size

All internal solver parameters are user-modifiable
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ARKode Usage

ARKode has been freely-available since 2014. We have specifically worked with
applications groups in:

ParaDiS – large-scale simulations of dislocation
growth/propagation (material strain hardening)
[Gardner et al., MSMSE, 2015]

Examined high-order adaptive DIRK
methods.

Examined nonlinear solvers and options.

Tempest & HOMME-NH – non-hydrostatic 3D
dynamical cores for atmospheric simulations
[Gardner et al., GMD, 2018; Vogl et al, in prep.]

Examined ImEx splittings & fixed-step
ARK methods for accuracy/stability

Examined nonlinear/linear solver
algorithms for implicit components

Implicit integration methods for dislocation dynamics 21

Table 3. Run time (seconds) and number of time steps for 3rd through 5th order

DIRK integrators on the Frank-Read source problem using the Newton-Krylov (NK)

solver to a final time of 50 µs. Recall ✏n is the nonlinear solver convergence tolerance

from (17) and ✏l is the linear solver tolerance factor in the inexact Newton iteration.

The native ParaDiS solver took 1120s and required 6,284 time steps for the same

problem. The DIRK solvers with ✏n = 1.0 and 4 iterations took as little as 1/44 as

many steps. Several methods achieved a speedup of 95% over the native ParaDiS

solver.

✏n = 0.1 ✏n = 0.5 ✏n = 1.0

Method Run time Steps Run time Steps Run time Steps

DIRK3 NK I2 ✏l0.1 174 576 620 1636 178 535

DIRK3 NK I3 ✏l0.1 1396 2995 664 1676 64 208

DIRK3 NK I4 ✏l0.1 84 235 68 216 62 202

DIRK3 NK I2 ✏l0.5 670 1832 104 368 432 1289

DIRK3 NK I3 ✏l0.5 77 240 613 1788 608 1739

DIRK3 NK I4 ✏l0.5 78 242 60 188 89 270

DIRK4 NK I2 ✏l0.1 174 478 108 305 81 229

DIRK4 NK I3 ✏l0.1 96 237 80 195 72 176

DIRK4 NK I4 ✏l0.1 84 203 71 117 67 175

DIRK4 NK I2 ✏l0.5 144 421 106 308 436 1060

DIRK4 NK I3 ✏l0.5 87 231 71 187 127 227

DIRK4 NK I4 ✏l0.5 86 213 87 202 53 140

DIRK5 NK I2 ✏l0.1 202 540 136 351 113 294

DIRK5 NK I3 ✏l0.1 286 620 114 253 70 170

DIRK5 NK I4 ✏l0.1 99 215 90 213 74 161

DIRK5 NK I2 ✏l0.5 222 571 139 369 86 250

DIRK5 NK I3 ✏l0.5 1001 1868 384 575 77 185

DIRK5 NK I4 ✏l0.5 88 212 366 665 70 169

(a) Initial system state (b) System state after 3.3 µs

Figure 3. (a) The initial condition for the cold start simulations containing ⇠450

nodes forming straight line dislocations. (b) The final system state after 3.3 µs with

⇠2850 nodes.

Implicit integration methods for dislocation dynamics 26

Figure 5. Dislocation density for the cold start problem using the trapezoid

method with two nonlinear iterations, trapezoid using Anderson acceleration with four

iterations and three residual vectors, and the 3rd and 5th order DIRK integrators with

Anderson acceleration with four nonlinear iterations and three residual vectors with

nonlinear tolerance factor ✏n 1.0. The di↵erent methods show good agreement in the

density curves throughout the duration of the simulation.

(a) System state after 4.4 µs (b) System state after 6.25 µs

Figure 6. (a) The final dislocation network for the warm start test after 1.1 µs for

a final simulation time of 4.4 µs containing ⇠2920 nodes. (b) The final warm start

system state after 2.95 µs for a final time of 6.25 µs with ⇠4950 nodes.
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Reconfiguring ARKode into an infrastructure

Over the last year, we have overhauled ARKode to serve as an infrastructure
for general, adaptive, one-step time integration methods:

ARKode provides the outer time integration loop and generic usage modes
(interpolation vs “tstop”; one-step versus time interval).

Time-stepping modules handle problem-specific components: definition of
the IVP, algorithm for a single time step.

Time-stepping modules may leverage shared ARKode infrastructure:

SUNDIALS’ vector, matrix, linear solver and nonlinear solver objects,

translation between SUNDIALS’ generic matrix/solver structures

(Ax = b) and IVP-specific linear systems (A ≈M − γ ∂fI

∂y
(t, y)),

time-step adaptivity controllers: PID, PI, I, user-supplied,

. . .

http://www.smu.edu
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://fastmath-scidac.org/
https://www.llnl.gov/


Motivation ARKode Background Multi-Physics Enhancements Conclusions, Etc.

Continued support for ARK, DIRK and ERK methods

All functionality from previous ARKode versions has been retained:

ARKStep supports ARK, DIRK and ERK methods for problems of the form

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0.

ERKStep is a leaner module that provides more optimal support for
ERK-specific methods applied to the standard IVP form,

ẏ = f(t, y), t ∈ [t0, tf ], y(t0) = y0.
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Multirate Infinitesimal Step (MIS) methods [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

MIS/RFSMR methods arose in the numerical weather prediction community. This
generic infrastructure supports O

(
h2
)

and O
(
h3
)

methods for multirate problems:

ẏ = f{f}(t, y) + f{s}(t, y), t ∈ [t0, tf ], y(t0) = y0,

f{f}(t, y) contains the “fast” terms; f{s}(t, y) contains the “slow” terms;

hs > hf , with a time scale separation hs/hf ≈ m;

y is frequently partitioned as well, e.g. y =
[
y{f} y{s}

]T
;

the slow component may be integrated using an explicit “outer” RK method,
TO = {A, b, c}, where ci ≤ ci+1, i = 1, . . . , s;

the fast component is advanced between slow stages by solving a modified ODE;

practically, this fast solution is subcycled using an “inner” RK method.
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MIS Algorithm

Denoting yn ≈ y(tn), a single MIS step yn → yn+1 has the generic form:

Set z1 = yn,

For i = 1, . . . , s :

Let tn,i = tn + cihs and v(tn,i) = zi, then for τ ∈ [tn,i, tn,i+1] solve:

v̇(τ) = f{f} (τ, v) +

i∑
j=1

αi+1,jf
{s} (tn,j , zj) ,

Set zi+1 = v(tn,i+1)

Set yn+1 = zs+1,

where the coefficients αi,j are defined appropriately.

The IVP for v(τ) may be solved using any applicable algorithm.
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MIS Properties

MIS methods satisfy a number of desirable multirate method properties:

The MIS method is O
(
h2
)

if both inner/outer methods are at least O
(
h2
)
.

The MIS method is O
(
h3
)

if both inner/outer methods are at least
O
(
h3
)
, and TO satisfies

s∑
i=2

(ci − ci−1) (ei + ei−1)
T Ac+ (1− cs)

(
1

2
+ eTs Ac

)
=

1

3
.

The inner method may be a subcycled TO, enabling a telescopic multirate
method (i.e., n-rate problems supported via recursion).

Both inner/outer methods can utilize problem-specific table (SSP, etc.).

Highly efficient – only a single traversal of [tn, tn + h] is required. To our
knowledge, MIS are the most efficient O

(
h3
)

multirate methods available.
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MRIStep ARKode stepper

David Gardner has implemented a new MRIStep module to support O
(
h2
)

and
O
(
h3
)

MIS-like methods [released Dec. 2018].

Currently requires user-defined hs and hf (may be varied between outer
steps). We are currently expanding this to support temporal adaptivity.

Slow time scale is integrated with an ERK method. We are currently
exploring methods with an implicit slow component.

Fast scale is advanced by calling the ARKStep module. Current release
requires ERK fast scale, but implicit and ImEx will be released soon.

Extensions to O
(
h4
)

and higher are under investigation:

J.M. Sexton’s RMIS computes yn+1 as a combination of {f(tn,i, zi)};
V.T. Luan’s MERK constructs fast IVP using exponential integrators;

A. Sandu’s MRI-GARK modifies the fast IVP:

v̇(τ) = f{f} (τ, v) +

i+1∑
j=1

γi,j

(
τ − tn,i

hs

)
f{s} (tn,j , zj) .
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Generalized Additive Runge-Kutta (GARK) stepper [Sandu & Günther, SINUM 2015]

David has also implemented a new IMEXGARKStep module to support ImEx
GARK methods for problems with two partitions:

ẏ = f{E}(t, y) + f{I}(t, y), t ∈ [t0, tf ], y(t0) = y0.

Users supply Butcher table components A{E,E}, A{I,I}, A{E,I} and
A{I,E}, corresponding to E-E, I-I, E-I and I-E couplings, respectively;
coefficients b{E} and b{I} define the timestep solution.

A{E,E} and A{E,I} must be explicit.

A{I,I} and A{I,E} can be diagonally implicit.

Currently assumes that all tables have the same number of stages.

This module will be included in an upcoming release.
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“ManyVector” for multi-physics data partitioning

We are also finishing a new vector kernel for SUNDIALS that will support
multi-physics data partitioning, y =

[
y1 y2 · · · ym

]
, yj ∈ Rnj :

CPU CPU CPU
CPU

GPU
GPU

GPU

P0 P1 P2 P3

Comm

GPU

Multi-rate or data partitioning:
subvectors utilize distinct
processing elements within each
node, allowing optimal hardware for
each component.

P0 P1 P2 P3

Comm2

Comm1

Intercommunicator

Multi-physics decompositions:
one physical system utilizes Comm1

while another utilizes Comm2;
inter-physics coupling is handled
with an MPI intercommunicator.
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Conclusions

The ARKode infrastructure flexibly supports extensive studies of optimal
algorithms for multiphysics problems:

Numerous built-in ERK, DIRK, and ARK methods; supports user-supplied.

Numerous vector/matrix data structures, support for user-supplied and
data partitioned.

Numerous algebraic solver algorithms, support for user-supplied.

Actively developing state-of-the-art flexible time integration methods for
multi-physics applications:

Additive partitioning – break apart physical processes based on
stiffness (implicit/explicit/IMEX) or time scale (fast/slow).

Variable partitioning – break apart solution based on time scales
(fast/slow) or solvers (algebraic, computing hardware).

Focus on ease-of-use and support for user-supplied components, so
that critical methods can be highly optimized for a given problem.

http://www.smu.edu
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://fastmath-scidac.org/
https://www.llnl.gov/


Motivation ARKode Background Multi-Physics Enhancements Conclusions, Etc.

Thanks & Acknowledgements

Collaborators/Students:

Carol S. Woodward [LLNL]

Rujeko Chinomona [SMU, PhD]

Vu Thai Luan [SMU, postdoc]

John Loffeld [LLNL]

Jean M. Sexton [LBL]

Current Grant/Computing Support:

DOE SciDAC & ECP Programs

SMU Center for Scientific Computation

Software:

ARKode – http://faculty.smu.edu/reynolds/arkode

SUNDIALS – https://computation.llnl.gov/casc/sundials

Support for this work was provided by the Department of Energy, Office of Science project “Frameworks,
Algorithms and Scalable Technologies for Mathematics (FASTMath),” under Lawrence Livermore National
Laboratory subcontract B626484.

http://www.smu.edu
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
https://fastmath-scidac.org/
https://www.llnl.gov/
http://faculty.smu.edu/reynolds/arkode
https://computation.llnl.gov/casc/sundials


Motivation ARKode Background Multi-Physics Enhancements Conclusions, Etc.

References

Ropp & Shadid, J. Comput. Phys., 203, 2005.

Estep et al., Comput. Meth. Appl. Mech. Eng., 196, 2007.

Ascher et al., Applied Numerical Mathematics, 25, 1997.
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