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Multiphysics/Multirate Problems

“Multiphysics” problems typically involve a variety of interacting processes:

System of components coupled in the bulk [cosmology, combustion]

System of components coupled across interfaces [climate, tokamak fusion]

Multiphysics simulation challenges include:

Multirate processes, but too close to analytically reformulate.

Optimal solvers may exist for some pieces, but not for the whole.

Mixing of stiff/nonstiff processes, a challenge for standard algorithms.

Here we’ll consider the prototypical problem

y′(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn.

fS(t, y) contains “slow” components that evolve with time scale H, and

fF (t, y) contains “fast” components that evolve with time scale h� H.

fS or fF may be further decomposed into stiff/nonstiff or fast/slow parts.
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Legacy Multirate Approaches

Historical approaches for the time step yn ≈ y(tn)→ yn+1 ≈ y(tn +H)
include first-order splittings and subcycling, e.g.,

y
(1)
n = yn +HfS(tn, yn),

Evolve: v′(θ) = fF (tn + θ, v), for θ ∈ [0, H], v(0) = y
(1)
n ,

yn+1 = v(H),

or potentially “Strang-Marchuk” splitting, e.g.,

y
(1)
n = yn + H

4
fS(tn, yn)

+H
4
fS
(
tn + H

2
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2
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)
,

Evolve: v′(θ) = fF (tn + θ, v), for θ ∈ [0, H], v(0) = y
(1)
n

y
(2)
n = v(H),

yn+1 = y
(2)
n + H

4
fS
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2
, y
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Legacy Multirate Approaches

Unfortunately, these simplistic splittings may suffer from:

Low accuracy:

typically
O(H)-accurate

symmetrization &
extrapolation may
improve but at
significant cost.

The spatial discretization is based on a finite element discretization of a Galerkin formulation using a
uniform grid of 500 elements with linear basis functions. This results in a system identical to Eq. (4) but
with the u, FR, and FD replaced by their discretized representations. The discretized representations of
FR and FD incorporate contributions from the mass matrix of the transient term.

The error that we report here is the ratio of the L2 norm of the difference of the numerical solution and a
reference solution to the L2 norm of the reference solution. The reference solution is computed using two-
point Richardson extrapolation of solutions using a second-order fully-implicit method at the two smallest
values of Dt.

3. Preliminary experiments and observations

We first summarize previously reported results. Fig. 1 shows the norm of the error of the solutions at
t = 80 ! 6.7s. Results are shown for FS-DR using backward Euler for the diffusion term, Strang RDR
using trapezoidal rule for the diffusion term, and trapezoidal rule for the fully coupled system. Both FS-
DR and trapezoidal rule have good convergence for the entire range of Dt at their expected rates of con-
vergence. For Strang RDR, however, there is no convergence unless Dt is sufficiently small. For Dt small
enough, the convergence is second-order as expected and the error is almost two orders of magnitude less
than that of trapezoidal rule.

In fact if we look at the solution using Strang RDR we see that high wave number oscillations have pol-
luted the solution, suggesting an instability. This is seen in Fig. 2, which plots the solution using Strang
RDR with Dt = 1.6 = 0.13s at t = 32 against a reference solution at this time. This behavior has been dis-
cussed previously in [13]. Here, we note that we need to use nearly 1000 time steps per period in order to get
acceptable accuracy and convergence. This is very restrictive, and suggests a fundamental problem in using
this method to solve this system of equations. In addition, as demonstrated in [13], these methods exhibit
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Fig. 1. Temporal convergence FS-DR, Strang RDR, and trapezoidal at t = 80 ! 6.7s (s = 12). The dotted lines are references with
first- and second-order slopes.

452 D.L. Ropp, J.N. Shadid / Journal of Computational Physics 203 (2005) 449–466

Convergence of splitting approaches (brusselator) [Ropp & Shadid 2005].

Poor/unknown stability:

Even when each part
utilizes a ‘stable’ step
size, the combined
problem may admit
unstable modes

!  Example from Estep et al. (2007),   ! = 2, u0 = 1 
!  50 time steps, phase 1 subcycled inside phase 2 

Operator splitting can destabilize multiphysics  
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Subcycling stability (reaction-diffusion) [Estep et al., 2008].
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Multirate Improvements

In recent decades, improvements to accuracy and stability for multirate
numerical methods have generally taken one of two forms:

Tighter slow ↔ fast coupling1:

+ typically only require a single ‘traversal’ of the step [tn, tn+1] by each
operator

− typically only enable O
(
H2
)

or O
(
H3
)

Extrapolation / deferred correction techniques2:

+ potential for arbitrarily-high accuracy

− require many traversals of the step [tn, tn+1]

1 Gear & Wells 1984; Günther, Kværnø & Rentrop 1999-2002; Constantinescu & Sandu 2007-09; Fok 2016; Arnold, Galant, Knoth,
Schlegel, Wensch & Wolke 2009-14

2 Engstler, Hairer, Lubich, Ostermann 1990-97; Constantinescu & Sandu 2010-13, Bouzarth & Minion 2010
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Sharpening our focus

Although there are a wide range of areas for additional research on multirate
integration, we further narrow our focus.

We consider only methods that require a small number of traversals of
each step [tn, tn+1], as these offer the potential for increased order and
stability without excessive computational cost.

We consider only methods that allow freedom in how the fast time scale is
integrated (similarly to the simplistic methods outlined earlier).∗

∗Many higher-order approaches require a fixed fast method and/or a fixed relationship

between H and h in order to interleave interpolation operations between scales.
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Multirate Infinitesimal Step (MIS) methods [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

MIS/RFSMR methods arose in the numerical weather prediction community.
This generic infrastructure supports O

(
h2
)

and O
(
h3
)

methods for multirate
problems:

y′(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn.

the slow component is integrated using an explicit “outer” RK method,
TO = {A, b, c}, where 0 = c1 ≤ c2 ≤ . . . ≤ cs ≤ 1;

the fast component is assumed to be the ‘exact’ solution to a modified
IVP (next slide);

practically, this fast solution is subcycled using an “inner” RK method.
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MIS Algorithm

A single MIS step yn → yn+1 has the form:

z1 = yn,

For i = 2, . . . , s :

Let r =

i−1∑
j=1

αi,jf
S (tn + cjH, zj)

Evolve: v′(θ) = fF (tn + θ, v) + r, for θ ∈ [ci−1H, ciH], v(0) = zi,

zi = v(ciH)

yn+1 = zs,

where αi,j are uniquely defined from ‘slow’ coefficients TO.

When ci = ci−1, the IVP “solve” reduces to a standard RK update.

The ‘fast’ IVP for v(θ) may be solved using any applicable algorithm.
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MIS Properties

MIS methods satisfy a number of desirable multirate method properties:

O
(
H2
)

if both inner/outer methods are at least O
(
H2
)
.

O
(
H3
)

if both inner/outer methods are at least O
(
H3
)
, and TO satisfies

s∑
i=2

(ci − ci−1) (ei + ei−1)T Ac+ (1− cs)
(

1

2
+ eTs Ac

)
=

1

3
.

The inner method may be a subcycled TO, enabling a telescopic multirate
method (i.e., n-rate problems supported via recursion).

Both inner/outer methods can utilize problem-specific table (SSP, etc.).

Highly efficient – only a single traversal of [tn, tn+1] is required. To our
knowledge, MIS are the most efficient O

(
H3
)

multirate methods available.
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Higher-order MIS-like methods

Very recently, groups have worked to extend the MIS approach to higher order:

A. Sandu’s MRI-GARK [SIAM J. Numer. Anal., 2019] modifies the fast IVP:

r → r(θ) =

i∑
j=1

γi,j

(
θ

(ci − ci−1)H

)
fS (tn + cjH, zj),

supporting O
(
H4
)

accuracy and implicit methods at the slow time scale.

Bauer & Knoth’s extMIS [J. Comput. Appl. Math., 2019] relaxes the MIS
structure slightly, and then develops additional order conditions on TO to
guarantee up to O

(
H4
)
.

J.M. Sexton’s RMIS [arXiv:1808.03718, 2019] computes yn+1 as a linear
combination of {fS(tn + ciH, zi) + fF (tn + ciH, zi)}, enabling O

(
H4
)

accuracy and conservation of linear invariants.
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Multirate Exponential Runge–Kutta (MERK) [Luan, Chinomona & R., SISC, 2020]

We consider the class of multirate IVPs

y′(t) = Ay + g(t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn,
The ‘fast’ time scale corresponds to the linear operator Ay.

The ‘slow’ time scale corresponds to g(t, y).

The same structure assumed by exponential Runge–Kutta (ExpRK) methods, that
may be written [Luan & Ostermann, JCAM, 2014]:

zi = yn + ciHϕ1(ciHA)F (tn, yn) +H

i−1∑
j=2

ai,j(HA)Dn,j , 1 ≤ i ≤ s,

yn+1 = yn +Hϕ1(HA)F (tn, yn) +H
s∑
i=2

bi(HA)Dn,i,

where F (t, y) = Ay + g(t, y), Dn,i = g(tn + ciH, zi)− g(tn, yn), and
ai,j(z), bi(z) are linear combinations of ϕk(ciz) and ϕk(z), with

ϕk(z) =

∫ 1

0
e(1−θ)z

θk−1

(k − 1)!
dθ, k ≥ 1.
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MERK Construction

Theorem (Luan, Chinomona & R., 2020)

Assuming that ai,j(HA), bi(HA) are strictly linear combinations of ϕk(ciHA)
and ϕk(HA), respectively:

ai,j(HA) =

li,j∑
k=1

α
(k)
i,j ϕk(ciHA), bi(HA) =

mi∑
k=1

β
(k)
i ϕk(HA),

then zi and yn+1 are the exact solutions of the ‘fast’ IVPs

v′n,i(θ) = Avn,i(θ) + pn,i(θ), vn,i(0) = yn (2 ≤ i ≤ s),
v′n(θ) = Avn(θ) + qn,s(θ), vn(0) = yn

at θ = ciH and θ = H, respectively, where

pn,i(θ) = g(tn, yn) +

i−1∑
j=2

 li,j∑
k=1

α
(k)
i,j

ckiH
k−1(k − 1)!

θk−1

 Dn,j ,

qn,s(θ) = g(tn, yn) +
s∑
j=2

(
mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
θk−1

)
Dn,i.
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MERK Convergence

Theorem (Luan, Chinomona & R., 2020)

Assuming that a MERK method is constructed from an ExpRK method of
global order p, with the associated ‘fast’ IVPs integrated with a step h = H/m
using methods with global orders q and r, respectively, then:

‖yn − y(tn)‖ ≤ C1H
p + C2Hh

q + C3h
r

on t0 ≤ tn = t0 + nH ≤ tf . Here C1 depends on tf − t0 but is independent of
n and H; C2 and C3 depend on the global order error constants of the chosen
IVP solvers.

Note the extra H in the second term: for a global method of order p we
require inner solvers for zi and yn+1 of orders q ≥ p− 1 and r ≥ p.

We evolve each of the s stages over [0, ciH] for i = 2, . . . , s, thus the

overall ‘traversal time’ is

(
1 +

s∑
i=1

ci

)
H (typically smaller than 3H).
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MERK Results
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Multirate Exponential Rosenbrock (MERB) [Luan, Chinomona & R., in progress]

We consider the class of multirate IVPs

y′(t) = F (t, y) = Jny + Vnt+N (t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn.

‘Fast’ scale corresponds to Jny with Jn = ∂F
∂y

(tn, un).

‘Slow’ scale corresponds to Vnt+N (t, y) with Vn = ∂F
∂t

(tn, yn) and
N (t, y) = F (t, y)− Jny − Vnt

Autonomous systems (Vn = 0) admit simpler methods.

The same structure as assumed by exponential Rosenbrock (ExpRB) methods,
that approximate each stage and step similarly to ExpRK. However, the
additional structure (∇N = 0) simplifies the order conditions immensely.

We have constructed MERB methods of orders 2 through 6

Even MERB6 only has a ‘traversal time’ of 1.254H
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http://www.msstate.edu
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials


D.R. Reynolds, R. Chinomona, V.T. Luan 19/30

Background New Developments Conclusions, Etc.

MERB Results – Non-autonomous bi-directional coupling test

For t ∈ (0, 1), x(0) = 2, y(0) = 20, z(0) = 2005, and β = 10−4:

x
′
= 100y − z − βt, y

′
= −100x,

z
′
= −5z − 5βt− β

(
x−

1

2005
z −

β

2005
t

)2

− β
(
y −

20

2005
z −

20β

2005
t

)2
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MERB Results – Reaction-Diffusion test (autonomous)

For ux(0, t) = ux(1, t) = 0, u(x, 0) = (1 + eλ(x−1))−1, λ = 1
2

√
2γ/ε, and γ = ε = 10−2:

ut = εuxx + γu
2
(1− u), x ∈ (0, 5), t ∈ (0, 3)
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Implicit-Explicit Multirate Infinitesimal Step (IMEX-MRI) [Chinomona & R., in progress]

We have extended Sandu’s MRI-GARK methods to support mixed
implicit-explicit treatment of the slow time scale, for problems of the form:

y′(t) = fI(t, y) + fE(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0 ∈ Rn.

These follow the same basic approach as the previous MIS algorithm, but with

r(θ) =
i∑

j=1

γi,j

(
θ

(ci − ci−1)H

)
fI(tn + cjH, zj)

+

i−1∑
j=1

ωi,j

(
θ

(ci − ci−1)H

)
fE(tn + cjH, zj)

We provide order conditions on coefficients for γi,j and ωi,j up to O
(
H4
)
,

relying on Sandu & Günther’s GARK framework [SIAM J. Numer. Anal., 2015].
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IMEX-MRI Construction

IMEX-MRI methods begin with an IMEX-ARK pair {AI , bI , cI ;AE , bE , cE}
where cI = cE ≡ c with 0 = c1 ≤ · · · ≤ cs ≤ 1.

Transform tables to ‘solve-decoupled’ form by inserting redundant stages:
each stage i may have either AIi,i 6= 0 or ci − ci−1 6= 0.

Extend AI , AE and c to ensure ‘stiffly-accurate’ condition:
cs̃ = 1, AIs̃,: = bI , AEs̃,: = bE .

Generate coefficients Γ(k) ∈ Rs̃×s̃ and Ω(k) ∈ Rs̃×s̃ for k = 0, . . . ,K, to
satisfy ARK consistency, internal consistency, order conditions, and
maximize ‘joint stability’ [Zharovsky et al., SINUM 2015; Sandu, SINUM 2019]:

Jα,β ≡
{
zE ∈ C− :

∣∣∣R(zF , zE , zI)∣∣∣ ≤ 1, ∀zF ∈ SFα , ∀zI ∈ SIβ
}

Sσα ≡
{
zσ ∈ C− : |arg(zσ)− π| ≤ α

}
O
(
H3
)

– s̃2 + 2(K+ 1)s̃+ 2 algebraic conditions (plus stability opt.)

O
(
H4
)

– s̃2 + 2(K+ 1)s̃+ 16 algebraic conditions (plus stability opt.)
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IMEX-MRI Stability – 3rd-order IMEX-MRI3a & IMEX-MRI3b (stab. opt.)

Jα,β regions for various
implicit sector angles β:

IMEX-MRI3a (↑)

IMEX-MRI3b (↓)

fast α = 10o (←)

fast α = 45o (→)

We have a simple O
(
H4
)

IMEX-MRI4 for
convergence tests, but it
lacks sufficient joint
stability for general use.
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IMEX-MRI Results
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Conclusions

Pervasive in multiphysics computations, simplistic operator-spliting & subcycling
remain the norm. New, flexible methods may soon break their monopoly:

Problems allowing explicit slow treatment may benefit from new approaches:

O
(
H3
)
: MIS, MRI-GARK, MERK (fast linear), MERB (fast ∼linear)

O
(
H4
)
: MRI-GARK, ExtMIS, RMIS, MERK (fast linear),

MERB (fast ∼linear)
O
(
H5
)
: MERK (fast linear), MERB (fast ∼linear)

O
(
H6
)
: MERB (fast ∼linear)

Problems that require implicit slow treatment may utilize novel O
(
H3
)

MIS &

MRI-GARK, or O
(
H4
)

MRI-GARK.

Problems that require mixed implicit-explicit slow treatment may utilize novel
O
(
H3
)

or O
(
H4
)

IMEX-MRI.

All of the methods discussed here allow:

Nearly arbitrary treatment of the fast time scale (explicit, implicit, IMEX, further
multirate) through definition of modified ‘fast’ IVPs.

May be extended to allow temporal adaptivity of both H and h.
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Future Work

Much work remains to be done:

Robust temporal controllers for both H and h (or even m-level
multirating, h1 > h2 > · · · > hm).

Advanced algorithms for ‘solve-coupled’ MRI-GARK and IMEX-MRI
(i.e., a stage i may have both AIi,i 6= 0 and ci − ci−1 6= 0).

Rigorous stability theory for additively-partitioned ODE systems
(not just y′ =

∑
k

λky, that assumes simultaneous diagonalizability).

New Γ(k) and Ω(k) tables for O
(
H4
)

MRI-GARK and IMEX-MRI methods
(and theory for order conditions at O

(
H5
)

and higher).

Robust and efficient software to facilitate use by multiphysics practitioners.
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