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Multiphysics simulations [keyes et al., 2013]

Multiphysics simulations couple together different
physical models, either in the bulk or across interfaces.
For example in climate:

@ atmospheric simulations combine fluid dynamics
with local “physics” models for chemistry,
condensation, ..., or

@ atmosphere may be coupled at interfaces to myriad
other processes (ocean, land/sea ice, ...), each
using distinct models.

[https://e3sm.org]
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Multiphysics challenges [keyes et al., 2013]

These combinations can challenge traditional numerical methods:
@ “Multirate” processes evolve on different time scales but prohibit analytical reformulation.
o Stiff components disallow fully explicit methods.
@ Nonlinearity and insufficient differentiability challenge fully implicit methods.

@ Parallel scalability demands optimal algorithms — while robust/scalable algebraic solvers exist for
parts (e.g., FMM for particles, multigrid for diffusion), none are optimal for the whole.

We may consider a prototypical problem as having m coupled evolutionary processes:

g = fM )+ + M y),  te (to,ts], y(to) = o

Each component f{k}(t, y):
@ may act on all of y (in the bulk), or on only a subset of y (within a subdomain),
@ may evolve on a different characteristic time scale,

@ may be “stiff” or “nonstiff,” thereby desiring implicit or explicit treatment.
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Multirate Infinitesimal Step (MIS/MRI) methods  [Schiegel et al., 2009; Sandu, 2019; Chinomona & R., 2021; ... ]

Multirate infinitesimal methods arose in numerical weather prediction, with dramatic recent advances.

Generic infrastructure supports additively-split multirate problems:

y(t):fl(t,y)—‘y-fE(t,y)-f—fF(f,y), te(t()vtf}? y(to):y()-

FE(t,y) == f1(t,y) + fE(t,y) contains the “slow” dynamics, evolved with time step H.
JF(t,y) contains the “fast” dynamics, evolved with time steps h < H.

Fast time scale is evolved using any desired solver (of sufficient accuracy), while slow time scale is
advanced through solving a sequence of modified “fast” IVPs.

Achieve higher-order through:

e appropriate specification of initial conditions for each fast IVP, and

o temporal interpolation of f° onto the fast time scale through definition of each fast IVP.

Extremely efficient — O(H4) attainable with only a single traversal of (tn,tn+1], unlike extrapolation or
deferred correction approaches that bootstrap Lie—Trotter operator splittings at significantly higher cost.
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MRI method skeleton

Denoting yn ~ y(tn), H = tpny1 —tn, Aci =c¢; —ci—1 and t, ; = tn + ¢;H, a step yn — Yn1 proceeds as:
1. Let: z1 = yn.

2. For each slow stage z;, i1 = 2,...,s:
i—1

a) Define: r;(1) = Z%J <AF H)f (tn,J,z])—I—qu,J (Ac H)f (tn,js25)-

b) Evolve: 0;(7) = f (tn, + 7,vi) 4+ ri(1), for T € (cl,lH, ciH], v(ci—1H) = zi—1.

c) Let: z; = v;(c; H).
3. Let: yn41 = 2zs.
@ Step 2b may use any applicable algorithm of sufficient accuracy (including another MRI method).
@ When Ac; = 0, step 2 reduces to an additive Runge—Kutta-like update,

Zz—Zz—1+HZ(/ ’YZJ da)fl(njvz] +HZ</ wl] de)fE(tn,jvzj)

@ Slow time scale is implicit when ~y; ;(0) # 0, only used when Ac; = 0 (a.k.a., “solve decoupled”).
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MRI variants
0 ifi=1,
@ Seminal up to O(H?) MIS methods set ; ;(6) = 0, w; ;(0) = AOJ A9 g fl<i<s,
b9 — Ag_l 4 ifi=s

(A9 b9 ,cO) is an “outer” explicit Butcher table with s — 1 stages and c < c

@ Sandu’'s MRI-GARK methods [SIAM J. Numer. Anal., 2019] support solve-decoupled implicit methods, setting

mal‘ k
¥i,5(0) = wi ;(0) = Z 7{ ok
where order conditions on I'{F} up to O(H*) leverage GARK framework [Sandu & Giinther, 2015].

@ Chinomona & R.’s IMEX-MRI-GARK methods [SIAM J. Sci. Comput., 2021] extend further to set

k ’VTLG/T k
7,5 (0) = Z VEeR, wiy0) = Z wikIor,
again leveraging GARK framework for up to O(H4) order conditions on I'{¥} and Q{*}.

@ Luan, Chinomona & R.’'s MERK and MERB methods [SIAM J. Sci. Comput., 2020 & 2022] instead leverage
exponential Runge—Kutta and Rosenbrock methods for up to O(HG) accuracy with similar structure.
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SUNDIALS - SUite of Nonlinear and Dlfferential-ALgebraic equation Solvers

@ Software library consisting of ODE and DAE integrators and nonlinear solvers

o Consists of six independent packages: CVODE(S), ARKODE, IDA(S), KINSOL
e Written in C with interfaces to Fortran (Python coming soon)
e Designed to be easily incorporated into existing codes

@ Modular implementation Combustion

o Data use is fully encapsulated by vector and matrix APls

e Nonlinear and linear solvers are fully encapsulated from the integrators

o All parallelism is encapsulated in vectors, solvers, and user-supplied functions
o Includes data structures and solvers for serial, threaded, MPI, and GPU

e Vector, matrix, and solver modules can all be user-supplied

Cosmology
@ Availability and support

o Freely available (BSD 3-Clause license); >120k downloads in 2021
o Detailed user manuals at sundials.readthedocs.io
o Active user community supported by sundials-users email list

Dislocation dynamics

For more information visit github.com/LLNL /sundials or computing.linl.gov/sundials Subsurface flow Supernovae
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ARKODE: a flexible infrastructure for one-step integration methods

@ Originally designed to provide adaptive implicit-explicit (IMEX) ARK methods for IVPs, but recently
overhauled to serve as an infrastructure for general, adaptive, one-step methods:

o ARKODE provides outer time integration loop and generic use modes e.g., interpolation vs “tstop”
o Time-stepping modules handle problem-specific components: IVP definition, single step algorithm
e The step modules leverage ARKODE's and SUNDIALS’ shared infrastructure e.g.,
o SUNDIALS vector, matrix, linear solver, and nonlinear solver objects
o Translation between generic solvers and IVP-specific algebraic systems
e Time-step adaptivity controllers (PID, PI, I, or user-supplied), temporal interpolation modules,
implicit predictors, ...

@ The new framework provides increased agility for implementing advanced algorithms in production software

o ARKStep: ARK, DIRK, and ERK methods for M (t)y' = f¥(t,y) + f1(t,y), y(to) = yo,
o ERKStep: A streamlined module with ERK methods for v/ = f(t,y), y(to) = vo,
o MRIStep: Multirate infinitesimal methods for v = f1(t,y) + fZ(t,y) + 7 (t,y), y(to) = yo.

@ Design to allow users to explore “algorithm space,” easily testing different methods for their application.
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MRIStep

The current MRIStep release (SUNDIALS v6.2.0) supports explicit MIS and MRI-GARK, and solve-decoupled
implicit MRI-GARK and IMEX-MRI-GARK methods

@ Built-in methods of O(HQ) through O(H4); supports user-provided coupling tables {F{k},Q{k}}
@ The slow time scale requires a user-defined fixed step size H that can be varied between steps
@ The fast time scale can be evolved using any viable user-supplied IVP solver (a “custom” inner stepper)

e Utility routine to wrap ARKStep for this role: adaptive or fixed-step explicit, implicit, or IMEX
treatment of the fast time scale

o ARKStep includes embedded methods of various orders (ARK 3 — 5, DIRK 2 - 5, and ERK 2 - 6, 8);
user-provided Butcher tables supported

e Example problems are even provided to show use of CVODE as a custom inner stepper
@ Solve-decoupled implicit methods can utilize the full ARKStep solver infrastructure

@ Robust multirate adaptivity (H and h) is under development [Fish & R., arXiv:2202.10484, 2022]
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Multiscale gyrokinetic simulations indicate cross-scale ITG/ETG turbulence

Initial studies with reduced ion/electron mass ratios
<M = y/mi/me < 60) found interactions between ion-

and electron-scale turbulence.
[Toda & Itoh, 2001; Li & Kishimoto, 2002; ...]

Gyrokinetic studies with realistic 4 = 60 indicated
different growth rates and energy transport, but require
resolving 2 orders of magnitude in both space & time.
[Howard et al., 2014 & 2021; Maeyama et al., 2015]

Realistic mass ratio simulations are required to
accurately predict fluxes in current/future reactors, but
each require O(10) million CPU-hours.

[Bonanomi et al., 2018]
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MuSHrooM: reduced 2D toroidal fluid model [Francisquez, Ernst, R., & Balos, 2021]

Developed reduced fluid model as accurate test-bed for algorithms, with same physics as 5D gyrokinetic
simulations. Model consists of two nonlinear, interacting, PDEs, {7, T, }, for each species s = {e,1}:

8£+ ¢ (v, ]_;,_ﬂ ¢ [ VL\I/ TL] — no (1+n¢1@i>iw*£
ot B T,0B 2 To
+’ﬂ0% <2+ %@i> ' eT\Z ;:dvdtz [(Tjo +Tro) n +noTL] = —ann + Dn,
%% TLB“] (Z—T; + é [‘I/,n]) - % [(1+m) <1+ %@i) +m%i} m*%
T cgto [%@i\p,n] + Cg—;’ [(1 4 %ﬁ’j) \I/,TJ_} + %% (3+ gﬁj +%i> md%
Cg—g [éixll,TL] + %% (rj,. +ri1) =—arTL + Dr,

where Uy = I‘l/z(bs)qﬁ and bs = k vs/Qs. Retains full Bessel functions for FLR effects, using gyrofluid tricks:

orl/? cTso
’v 1/2:b > iWes = ————V bxV
il Obo s eBng no-
F) arl/? Vs L
VATY? = by (TY/2 4 by 0 jwis = ——"H x VB -V
) T ST Wis = 0B
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Pseudospectral discretization

@ Discretize spatial domain [Lz, Ly] using Fourier basis with NN, uniformly spaced grid points, e.g.,

5 2mik 2mik
ni(t,w,y) = > ik, .k, () exp T+ Yy
P Ly Ly
xRy

@ Standard 2D MPI domain decomposition for [Lg, Ly]

@ Evolve PDE system in the frequency domain: coupled system of 4N, N, IVPs for the time-dependent
coefficients {ﬁi,kz,ky (t)’ ﬁe,kx ky (t)7 Ti,kz ky (t)7 Te,kz Ky (t)}

@ While spatial derivatives correspond with simple scalar multiplication, evaluation of Poisson brackets
(@, Y] := OxpOy1p — Oy Ozt requires FFT/IFFT.

@ lon temperature gradient (ITG) modes occur at low ky, whereas ETG modes occur at higher k.

@ Large-scale energy fluxes occur at ion scales and should be accurately resolved, but electron scale transport
need only be captured in an averaged sense.

@ Electron scale transport induces limits on explicit time integration: (60x faster) x (60x finer resolution)

D.R. Reynolds et al. 15/25
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Multirate formulation: exploit inherent time/space scale separation

Partition wavenumber space into non-overlapping sets K; = {(kz, ky) : ky < ky,c} and
Ke = {(kz,ky) : ky > ky,c}. The full multiscale MuSHrooM model may be written

{i} ! {i} ({7} 4 {e}
y'(t) = B{e}g))} = U{e}((Z{i}:Z{e}i] = f(t), te(tots], wy(to) =wo,

We define the “time averaging” operator:
—{e} 1 t+At () r
R v vl IV A )L
®:9) At = Atmin Ji4Atpmin %)

where §(7) solves the full multiscale IVP §/(7) = f(g) for 7 € (¢,t + At] with g(¢) = y(t).

Assumptions:
@ The fastest components that we must accurately capture are in C; — our “fast” time scale.
@ The dynamics in K. (that are accurately tracked by §) are “microscale” — do not need to be resolved.

@ Moments f{e}(t, y) evolve on a considerably slower time scale than the “fast” dynamics within ;.
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Multirate formulation: exploit inherent time/space scale separation

We consider a partially-time-averaged version of the original MuSHrooM model,

] -

that may be evolved using an explicit MRI-GARK algorithm with the partitioning

7 (i) gle)| t € (to,trl,  y(to) = vo,

o f{i}(y{i}vg{e}) s 0

@ In the limit as Atypin, At — 0, the homogenized IVP converges to the original IVP.

@ The MRI-GARK method will use slow/fast time steps H and h, corresponding with the dynamics of glet
and y1i}, respectively.

@ Evaluation of f° requires short bursts of the full multiscale model for 4 over [t,t + At], using microscale
time steps 0t < h.
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Multirate splitting parameters

@ ky c: defines the frequency threshold for resolved vs unresolved modes. Asymptotic arguments estimate
this as roughly ky /Ny, ~ 1/60.

@ Atmin: each short simulation for § must first integrate past initial transients before constructing the time
average.

@ At: since ?{e} is averaged over [At,n, At], this must be large enough to construct a good average, but
small enough to achieve overall cost savings, e.g., 2Atin < At < H/100.

@ 0t and h: both may be computed adaptively by ARKStep; we expect that ¢ < ~/1000.

@ H: hope to eventually use multirate adaptivity, but we must currently determine this experimentally.

N
MRI Speedup = —————— =~ N times faster than full multi-scale
1+ N HTépy
R T
! JCry Ay s " CPU time

L <1 ot 2 ty) + (), y(to) = o per step

on h
Scales i fty) Ty

Electron L T ; ; ; 4 ! ; ; ; 4 ! S S

Scales 7 p— i ‘NH ' fo(ty) Tepu
Multi- fty) Ty
Scale
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Experimental parameter identification from full multiscale model

Currently running §(7) over a subset T € [to,ff} to determine appropriate parameter values.
@ Atyin: €xamine f{e} as Atpin — 0. This should converge to a point, followed by stagnation.

@ At: using a “best” At from above, examine f{e} as At — ff. This should converge as

1/(At — Atmin), illuminating potential ?{e} accuracy (and corresponding cost).

@ ky c: perform above tests for multiple ky . near Ny /60. As ky . — 0, “optimal” values of both Aty
and At should increase to better capture ion-scale dynamics.

@ H: using “best” candidates for At and At,,;, from above, examine temporal autocorrelation function
(F ) = () - (F 9 e+ 0,9) - (£1))
7y -7 )

where <f{e}> is the time average of f{e}(t7 y) over t € [to,ts]. Should find an H such that
autocorrelation is high for 8 < H and low for 6 > H.

G(0) =

)

D.R. Reynolds et al. 19/25
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Conclusions

Large-scale multiphysics problems:
@ Nonlinear, interacting models pose key challenges to stable, accurate and scalable simulation.

@ Large data requirements require scalable solvers; while individual processes admit “optimal” algorithms &
time scales, these rarely agree.

@ Most classical methods derived for idealized problems perform poorly on “real world” applications.

Although simple operator-spliting remains standard, new & flexible methods are catching up, supporting high
order accuracy (up to O(H®)) and multirate/IMEX flexibility.

The optimal choice of method depends on a variety of factors:
@ whether the problem admits a natural and effective IMEX and/or multirate splitting,
@ relative costs of f°(t,y) and f7 (t,v) for multirate; availability of optimal algebraic solvers for f7(t,),

@ desired solution accuracy, ...

D.R. Reynolds et al. 21/25
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Future Work

Much work remains to be done:
@ Complete investigation of appropriate multirate splitting parameters for MuSHrooM.
@ Investigate multirate temporal adaptivity within MuSHrooM.
@ Investigate performance and accuracy of MuSHrooM multirate splitting for ITG/ETG turbulence.

@ Expand ARKODE's MRIStep module to support additional multirate infinitesimal methods (e.g., MERK,
MERB, etc.).

@ Derive new I'*) and Q(¥) tables (with embeddings) for MRI-GARK, IMEX-MRI-GARK, MERK and
MERB methods.
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IMEX-MRI-GARK convergence/efficiency results [Chinomona & R., SIAM J. Sci. Comput., 2021]
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Multirate reacting flow demonstration problem

3D nonlinear compressible Euler equations combined with stiff chemical reactions for a low-density primordial

gas (molecular & ionization states of H and He, free electrons, and internal gas energy), present in models of
the early universe.

w = -V -F(w)+R(w), w(tg) = wo,
w: density, momenta, total energy, and chemical densities (10)
F: advective fluxes (nonstiff/slow); and R: reaction network (stiff/fast)

w is stored as an MPIManyVector:

@ Software layer treating collection of vector TaskQ ————— Taskl ——— Task2
objects as a single cohesive vector. w w w
@ Fluid species (density, momenta, total - e - LR - e
energy) each stored in main memory. E]D SJDDD &]DDD
@ Chemical densities stored in GPU memory,
using NVECTOR_RAJA interface. = 5 =
5 ¢ & ¢ & ¢
@ ManyVector handles MPI collectives; manual

point-to-point communication for fluxes.

D.R. Reynolds et al. 4/8
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Multirate reacting flow solver strategy

@ Method of lines: (X,t) € Q x (to,ty], with Q = [z, zr] X [y, yr] X [21, 2]
@ Regular ny X ny X n grid for €2, parallelized using standard 3D MPI domain decomposition.
e O(Az5) FD-WENO flux reconstruction for F(w) [Shu, 2003].

@ Resulting IVP system: w(t) = fi1(w) + f2(w), w(to) = wo, where f1(w) contains —V - F(w) and is
evaluated on the CPU, while fa(w) contains spatially-local reaction network R(w) and is evaluated on the
GPU.

@ Compare two forms of temporal evolution:

(a) Temporally-adaptive, O(H3) ARK-IMEX method from ARKStep: f1 explicit and f> implicit.

(b) Fixed-step, O(H?) explicit MRI-GARK method from MRIStep (temporally-adaptive fast step
h): f1 slow/explicit and f, fast/DIRK.
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IMEX approach

@ At each stage z; within the ARK-IMEX method, we must solve a nonlinearly implicit system

i—1

2= hAL fa(z0) —yn = b Y (AP 11(25) + AL fa(z5) ) =0,
j=1

@ Since f contains only spatially-local reaction terms, Newton's method applied to this results in
block-diagonal linear systems

J1 Jp,1,1,1
J2 Jp,2,1,1 Lox10
X
J= _ Iy = . » JIpigk €R :

an Jpvnmlocvnylocv”zloc

@ We construct a custom SUNLinearSolver that solves each J,x, = b, using SUNDIALS’ new GPU-enabled
SUNLinSol_MagmaDense batched solver interface. The only communication required is a single
MPI_Allreduce to gauge success/failure of the overall linear solve with J, along with norms associated
with Newton's method.
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Multirate approach

@ The O(H3) explicit MRI-GARK method evaluates f; three times per slow step, and requires three
modified fast IVPs:
vi(t) = fa(v) +7i(7), T € (ci—1H,ciH], v(ci—1H) =2z
corresponding with a system of nznyn. decoupled 15-variable IVPs.
@ We construct a custom MRISteplnnerStepper that evolves these separately on each MPI rank.
o The MRIStep-provided z; and r;(7) use MPIManyVectors.

o Custom stepper repackages as rank-local ManyVectors, calling ARKStep to evolve each:
// create ManyVector version of input MPIManyVector (reuse y's context object)
N_Vector ysubvecs[6];
for (int ivec=0; ivec<6; ivec++)
ysubvecs[ivec] = N_VGetSubvector_MPIManyVector(y, ivec);
N_Vector yloc = N_VNewManyVector(6, ysubvecs, y->sunctx);
o Implicit solves at the fast time scale involve rank-local Newton solvers, with nearly identical
GPU-enabled SUNLinSol_MagmaDense batched solver interface.
o MPI_Allreduce call to gauge success/failure of fast IVP solves [at slow time scale].
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Multirate reacting flow weak scaling results (Summit: CPU+GPU)

ImEx Simulation Time Multirate Simulation Time
30001 7oy - fAdv /
@ Weak scaling runs with 1 2s00{ 2 1Shem 40 = fehem
MPI rank per GPU. 2000] 7 == other T -
—_ — 30
= =
@ Multirate H chosen g 1500 £,
proportional to CFL " 1000 -
condition on f.
500
@ Both approaches show o YERTIITTYI
o 1
excellent alg. scalability. ranks ranks
@ Huge reduction in f1
evals allows MR / IMEX ImEx Algorithmic Scalability Multirate Algorithmic Scalability
speedup of ~70x. 104 10
-} H 1 R —— slow steps
GPU synchromz_atlon . steps 100 fast steps
more severely hinders fAdv evals — fAdv evals
. ™ 2 —— fChem evals 8
runtime scalability of s —— LSetups s — {Cshe’“e"ﬂ's
IMEX than MR, due to 102] — Jevais e
. — Niters
increased frequency (fast Niters
vs slow stages). . 10!
10
24 192 1536 5184 24 192 1536 5184 1228824000
ranks ranks
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