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Multiphysics Simulations [Keyes et al., 2013]

Multiphysics simulations couple different models either in the bulk or across interfaces.

Climate:

Atmospheric simulations combine fluid dynamics with
local “physics” models for chemistry, condensation, . . . .

Atmosphere is coupled at interfaces to myriad other
processes (ocean, land/sea ice, . . . ), each using distinct
models.

Astrophysics/cosmology:

Dark matter modeled using particles that give rise to
large-scale gravitational structures (at right).

Baryonic matter modeled by combining fluid dynamics,
gravity, radiation transport, and reaction networks for
chemical ionization states.

[https://e3sm.org]

[http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118]
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Multiphysics Challenges [Keyes et al., 2013]

These model combinations can challenge traditional numerical methods:

“Multirate” processes evolve on different time scales but prohibit analytical reformulation.

Stiff components disallow fully explicit methods.

Nonlinearity and insufficient differentiability challenge fully implicit methods.

Parallel scalability demands optimal algorithms – while robust/scalable algebraic solvers exist for
parts (e.g., FMM for particles, multigrid for diffusion), none are optimal for the whole.

We may consider a prototypical problem as having m coupled evolutionary processes:

ẏ(t) = f{1}(t, y) + · · ·+ f{m}(t, y), t ∈ [t0, tf ], y(t0) = y0.

Each component f{k}(t, y):

may act on all of y (in the bulk), or on only a subset of y (within a subdomain),

may evolve on a different characteristic time scale,

may be “stiff” or “nonstiff,” thereby desiring implicit or explicit treatment.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
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Legacy Multiphysics Method 1: Lie–Trotter

“Operator-splitting” approaches have historically been used for multiphysics applications.

Lie–Trotter computes yn → yn+1 (here, yn ≈ y(tn)) via

ẏ{1}(t) = f{1}
(
t, y{1}

)
, t ∈ [tn, tn+1], y{1}(tn) = yn,

ẏ{2}(t) = f{2}
(
t, y{2}

)
, t ∈ [tn, tn+1], y{2}(tn) = y{1}(tn+1),

...

ẏ{m}(t) = f{m}
(
t, y{m}

)
, t ∈ [tn, tn+1], y{m}(tn) = y{m−1}(tn+1),

and sets yn+1 = y{m}(tn+1). Each IVP is tackled independently using different “standard” approaches
(e.g., implicit Euler, ERK-4, subcycling, . . . ).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
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Legacy Multiphysics Method 2: Strang–Marchuk

ẏ{1}(t) = f{1}
(
t, y{1}

)
, t ∈ [tn, tn+1/2], y{1}(tn) = yn,

...

ẏ{m−1}(t) = f{m−1}
(
t, y{m−1}

)
, t ∈ [tn, tn+1/2], y{m−1}(tn) = y{m−2}(tn+1/2),

ẏ{m}(t) = f{m}
(
t, y{m}

)
, t ∈ [tn, tn+1], y{m}(tn) = y{m−1}(tn+1/2),

ẏ{m−1}(t) = f{m−1}
(
t, y{m−1}

)
, t ∈ [tn+1/2, tn+1], y{m−1}(tn+1/2) = y{m}(tn+1),

...

ẏ{1}(t) = f{1}
(
t, y{1}

)
, t ∈ [tn+1/2, tn+1], y{1}(tn+1/2) = y{2}(tn+1),

yn+1 = y{1}(tn+1).
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Shorcomings of loose “initial condition” coupling

Generally poor accuracy:

No matter the accuracy of each
sub-solver, Lie–Trotter is at best O(H)
and Strang–Marchuk is O

(
H2

)
.

Extrapolation or deferred correction can
improve this but at significant cost.

The spatial discretization is based on a finite element discretization of a Galerkin formulation using a
uniform grid of 500 elements with linear basis functions. This results in a system identical to Eq. (4) but
with the u, FR, and FD replaced by their discretized representations. The discretized representations of
FR and FD incorporate contributions from the mass matrix of the transient term.

The error that we report here is the ratio of the L2 norm of the difference of the numerical solution and a
reference solution to the L2 norm of the reference solution. The reference solution is computed using two-
point Richardson extrapolation of solutions using a second-order fully-implicit method at the two smallest
values of Dt.

3. Preliminary experiments and observations

We first summarize previously reported results. Fig. 1 shows the norm of the error of the solutions at
t = 80 ! 6.7s. Results are shown for FS-DR using backward Euler for the diffusion term, Strang RDR
using trapezoidal rule for the diffusion term, and trapezoidal rule for the fully coupled system. Both FS-
DR and trapezoidal rule have good convergence for the entire range of Dt at their expected rates of con-
vergence. For Strang RDR, however, there is no convergence unless Dt is sufficiently small. For Dt small
enough, the convergence is second-order as expected and the error is almost two orders of magnitude less
than that of trapezoidal rule.

In fact if we look at the solution using Strang RDR we see that high wave number oscillations have pol-
luted the solution, suggesting an instability. This is seen in Fig. 2, which plots the solution using Strang
RDR with Dt = 1.6 = 0.13s at t = 32 against a reference solution at this time. This behavior has been dis-
cussed previously in [13]. Here, we note that we need to use nearly 1000 time steps per period in order to get
acceptable accuracy and convergence. This is very restrictive, and suggests a fundamental problem in using
this method to solve this system of equations. In addition, as demonstrated in [13], these methods exhibit
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Fig. 1. Temporal convergence FS-DR, Strang RDR, and trapezoidal at t = 80 ! 6.7s (s = 12). The dotted lines are references with
first- and second-order slopes.

452 D.L. Ropp, J.N. Shadid / Journal of Computational Physics 203 (2005) 449–466

Convergence of splitting

approaches (brusselator)

[Ropp & Shadid, 2005].

Poor stability:

Even “stable”
step sizes for
each part can
result in unstable
modes.

!  Example from Estep et al. (2007),   ! = 2, u0 = 1 
!  50 time steps, phase 1 subcycled inside phase 2 

Operator splitting can destabilize multiphysics  
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2008].
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Additive Runge–Kutta (ARK) Methods [Ascher et al., 1997; Araújo et al., 1997; Kennedy & Carpenter, 2003; . . . ]

ARK methods allow high-order adaptive implicit-explicit time integration for additively-split single rate
simulations:

M(t) ẏ(t) = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

M is any nonsingular linear operator (mass matrix, typically M = I, as used below),

fE(t, y) contains the nonstiff terms to be treated explicitly,

fI(t, y) contains the stiff terms to be treated implicitly.

Combine two s-stage RK methods; denoting hn = tn+1 − tn, tEn,j = tn + cEj hn, tIn,j = tn + cIjhn:

zi = yn + hn

i−1∑
j=1

aEi,jf
E(tEn,j , zj) + hn

i∑
j=1

aIi,jf
I(tIn,j , zj), i = 1, . . . , s,

yn+1 = yn + hn

s∑
j=1

[
bEj fE(tEn,j , zj) + bIjf

I(tIn,j , zj)
]

(solution)

ỹn+1 = yn + hn

s∑
j=1

[
b̃Ej fE(tEn,j , zj) + b̃Ijf

I(tIn,j , zj)
]

(embedding)

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
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Solving each stage zi, i = 1, . . . , s

Per-stage cost is commensurate with implicit Euler for ẏ(t) = fI(t, y) – solve a root-finding problem:

0 = Gi(z) =
[
z − hna

I
i,if

I(tIn,i, z)
]
−

[
yn + hn

i−1∑
j=1

(
aE
i,jf

E(tEn,j , zj) + aI
i,jf

I(tIn,j , zj)
)]

If fI(t, y) is linear in y then this is a large-scale linear system for each zi.

Else this requires an iterative solver (e.g., Newton, accelerated fixed-point, or problem-specific).

All operators in fE(t, y) are treated explicitly (do not affect algebraic solvers).

ARK methods are defined by compatible explicit
{
cE , AE , bE , b̃E

}
and implicit

{
cI , AI , bI , b̃I

}
tables.

Derived in unison to satisfy order conditions arising from NB-trees.

By selecting AI = 0 and fI(t, y) = 0, or AE = 0 and fE(t, y) = 0, ARK methods reduce to
standard ERK or DIRK.

https://www.smu.edu
https://www.temple.edu
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Multirate Infinitesimal Step (MIS/MRI) methods [Schlegel et al., 2009; Sandu, 2019; . . . ]

MRI methods arose in the numerical weather prediction community. This generic infrastructure supports up to
O
(
h4

)
methods for multirate problems:

ẏ(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fS(t, y) contains the “slow” dynamics, evolved with time step H.

fF (t, y) contains the “fast” dynamics, evolved with time steps h≪ H.

The slow component is defined by an “outer” RK method, while the fast component is advanced between
slow stages by solving a modified IVP with a subcycled “inner” RK method.

Extremely efficient – high order attainable with only a single traversal of [tn, tn+1].

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
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MIS/MRI Algorithm [Schlegel et al., 2009; Sandu, 2019; . . . ]

Denoting yn ≈ y(tn) and H = tn+1 − tn, a single step yn → yn+1 proceeds as follows:

1. Let: z1 = yn.

2. For each slow stage zi, i = 2, . . . , s:

a) Define: ri(τ) =
i∑

j=1
γi,j

(
τ

(ci−ci−1)H

)
fS (tn + cjH, zj).

b) Evolve: v̇(τ) = fF (tn + τ, v) + ri(τ), for τ ∈ [ci−1H, ciH], v(ci−1H) = zi.

c) Let: zi = v(ciH).

3. Let: yn+1 = zs.

MIS: γi,j(θ) is independent of θ, with coefficients computed from the “outer” Runge–Kutta method.

MRI: γi,j(θ) is polynomial in θ, coefficients satisfy GARK-based order conditions [Sandu & Günther, 2015].

Step 2b may use any applicable algorithm of sufficient accuracy (including another MRI method).

When ci = ci−1, step 2b reduces to a standard ERK/DIRK Runge–Kutta stage update.

Implicitness at the slow scale depends on “diagonal” γi,i(θ), typically only used when ci = ci−1.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials
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Other high-order infinitesimal methods

In the last few years multiple groups have made progress on higher-order MRI-like methods:

extMIS [Bauer & Knoth, 2019] slightly modifies their MIS algorithm, and develops O
(
H4

)
conditions.

RMIS [Sexton & R., 2019] follows basic MIS stages by computing updated step yn+1 as
s∑

j=1

bj
(
fS(tn + cjH, zj) + fF (tn + cjH, zj)

)
, enabling O

(
H4

)
and conserv. linear invariants.

MERK [Luan, Chinomona & R., 2020] constructs ri(τ) to approximate the action of matrix φ-functions
from Exponential Runge–Kutta methods, inheriting up to O

(
H5

)
from base ExpRK method.

MERB [Luan, Chinomona & R., 2021] constructs ri(τ) to approximate the action of matrix φ-functions
from Exponential Rosenbrock methods, inheriting up to O

(
H6

)
from base ExpRB method.

Each of these methods focus on explicit treatment of the slow time scale fS(t, y).

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
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Implicit-Explicit Multirate Infinitesimal GARK Methods [Chinomona & R., SIAM J. Sci. Comput., 2021]

To better support the flexibility needs of multiphysics problems, we have extended Sandu’s MRI-GARK
methods to support implicit-explicit treatment of the slow time scale, for problems of the form:

ẏ(t) = fI(t, y) + fE(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

These follow the same basic approach as the previous MRI algorithm, but with forcing function

ri(τ) =
i∑

j=1

γi,j
(

τ
(ci−ci−1)H

)
fI(tn + cjH, zj) +

i−1∑
j=1

ωi,j

(
τ

(ci−ci−1)H

)
fE(tn + cjH, zj),

where γi,j(θ) :=
kmax∑
k=0

γ
{k}
i,j θk and ωi,j(θ) :=

kmax∑
k=0

ω
{k}
i,j θk.

Coefficients matrices Γ{k},Ω{k} ∈ Rs×s are lower and strictly lower triangular, respectively.

Order conditions up to O
(
H4

)
leverage GARK framework.

While theory supports “solve-coupled” methods; all current tables are solve-decoupled.

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
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Joint Linear Stability – IMEX-MRI-GARK3a & IMEX-MRI-GARK3b (stability optimized)

Multirate method stability is currently difficult to analyze. Examining “joint stability” [Zharovsky et al.,

2015] for the Dahlquist-like test problem ẏ = λIy + λEy + λF y:

Jα,β =
{
zE ∈ C− :

∣∣∣R(
zF , zE , zI

)∣∣∣ ≤ 1, ∀zF ∈ SFα , ∀zI ∈ SIβ
}
, Sσα =

{
zσ ∈ C− : |arg(zσ)− π| ≤ α

}
Jα,β regions for various implicit sector
angles β:

IMEX-MRI-GARK3a (↑)

IMEX-MRI-GARK3b (↓)

fast α = 10o (←)

fast α = 45o (→)

We have a O
(
H4

)
IMEX-MRI-GARK4 table

for convergence verification, though it has
poor joint stability.

-3 -2 -1 0
-3

-2

-1

0

1

2

3

10°

30°

45°

60°

80°

90°

Base

 values

-3 -2 -1 0
-3

-2

-1

0

1

2

3

10°

30°

45°

60°

80°

90°

Base

 values

-3 -2 -1 0
-3

-2

-1

0

1

2

3

10°

30°

45°

60°

80°

90°

Base

 values

-3 -2 -1 0
-3

-2

-1

0

1

2

3

10°

30°

45°

60°

80°

90°

Base

 values

https://www.smu.edu
https://www.temple.edu
https://www.llnl.gov
https://scidac5-fastmath.lbl.gov/home
https://www.exascaleproject.org/
https://computation.llnl.gov/projects/sundials


D.R. Reynolds et al. 20/35

Multiphysics Background “Flexible” Building Blocks IMEX-MRI-GARK Methods Software Conclusions, Etc.

IMEX-MRI-GARK Convergence/Efficiency Results
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Software: ARKODE and SUNDIALS

ARKODE’s initial release within SUNDIALS in 2014 provided adaptive IMEX-ARK methods. Since
then we have enhanced ARKODE to include a variety of “steppers”:

ARKStep: supports all of ARKODE’s original functionality (adaptive ARK, ERK, DIRK methods);
includes an interface to XBraid for PinT (work by D. Gardner).

ERKStep: tuned for highly efficient explicit Runge–Kutta methods.

MRIStep: infinitesimal multirate time stepping module.

Includes explicit MIS method of O
(
H3

)
.

Includes explicit or solve-decoupled implicit MRI-GARK methods of O
(
H2

)
to O

(
H4

)
.

Includes IMEX-MRI-GARK methods of O
(
H3

)
to O

(
H4

)
.

Supports user-provided MRI-GARK tables Γ{k} or IMEX-MRI-GARK tables {Γ{k},Ω{k}}.
Slow time scale uses a user-defined H that can be varied between steps. Fast time scale
evolved using ARKStep or any viable user-supplied IVP solver.

Robust multirate adaptivity (H and h) in development [Fish & R., arXiv:2202.10484, 2022].
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ARKODE leverages SUNDIALS’ Modular Design & Control Inversion [Gardner et al., 2021]

Control passes between integrator, solvers, and application code as the integration progresses:

Time integrators are
agnostic as to the vector
data layout and algebraic
solvers used, leveraging
application-specific
implementations where
possible, and providing
native modules if desired.
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Multirate reacting flow demonstration problem

3D nonlinear compressible Euler equations combined with stiff chemical reactions for a low-density primordial
gas (molecular & ionization states of H and He, free electrons, and internal gas energy), present in models of
the early universe.

∂tw = −∇ · F(w) +R(w), w(t0) = w0,

w: density, momenta, total energy, and chemical densities (10)
F: advective fluxes (nonstiff/slow); and R: reaction network (stiff/fast)

w is stored as an MPIManyVector:

Software layer treating collection of vector
objects as a single cohesive vector.

Does not touch any vector data directly.

Simplifies partitioning of data among
computational resources (e.g., CPU vs GPU).

May also combine distinct MPI
intracommunicators together in a
multiphysics simulation.

𝜌 𝑚! 𝑚"𝜌 𝑚# 𝑒$𝑒$𝑚# 𝜌 𝑚"𝑚! 𝑚" 𝑚#𝑒$ 𝑚!

𝒄𝒄𝒄

𝒘 𝒘 𝒘

Task 0 Task 1 Task 2

w is a collection of distributed vectors (density ρ, momentum mi,
and total energy eT ), and local vectors c (chemical densities).
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Multirate reacting flow solver strategy

Method of lines: (X, t) ∈ Ω× (t0, tf ], with Ω = [xl, xr]× [yl, yr]× [zl, zr].

Regular nx × ny × nz grid for Ω, parallelized using standard 3D MPI domain decomposition.

O
(
∆x5

)
FD-WENO flux reconstruction for F(w) [Shu, 2003].

Resulting IVP system: ẇ(t) = f1(w) + f2(w), w(t0) = w0, where f1(w) contains −∇ · F(w),
and f2(w) contains spatially-local reaction network R(w).

Compare two forms of temporal evolution:

(a) temporally-adaptive, O
(
H3

)
ARK-IMEX method from ARKStep: f1 explicit and f2 implicit,

(b) fixed-step, O
(
H3

)
MRI-GARK method from MRIStep (temporally-adaptive fast step h):

f1 slow/explicit and f2 fast/DIRK.
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Multirate reacting flow results (CPU) – GMRES for spatially-local linear solves in f2

∼10× speedup with multirate
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Multirate Simulation Time
total
fast RHS
slow RHS
LSolve
unaccounted

90% weak scaling efficiency using 80 to
138,240 CPU cores of OLCF Summit.

Multirating allows advection (which requires MPI) to run at a far larger time step size than that required
for the single rate ImEx method to maintain stability, leading to significant speedup.

Multirate cost is dominated by fast RHS (which remains unchanged from ImEx); upturn at largest size due
to serialized chemical rate table input (subsequently fixed).
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Multirate reacting flow (CPU+GPU) – hydro data & f1 on CPU, chem data & f2 on GPU
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ImEx and multirate
results using hybrid
CPU+GPU on OLCF
Summit.

Larger-scale jobs are
currently waiting in
the queue.
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Both use robust MAGMA batched linear solver, enabling a much more challenging test setup.

ImEx: although f2 is spatially-local, synchronizations occur within every global time step.

Multirate: f2 integrated separately on each MPI rank, relaxing synchronizations to “slow” f1 time scale.

Huge reduction in f1 evaluations allows multirate speedup of ∼50× over ImEx.

Both solvers show algorithmic scalability, but GPU over-synchronization hinders ImEx runtime scalability.
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Conclusions

Large-scale multiphysics problems:

Nonlinear, interacting models pose key challenges to stable, accurate and scalable simulation.

Large data requirements require scalable solvers; while individual processes admit “optimal” algorithms &
time scales, these rarely agree.

Most classical methods derived for idealized problems perform poorly on “real world” applications.

Although simple operator-spliting remains standard, new & flexible methods are catching up, supporting high
order accuracy (up to O

(
H6

)
) and multirate/ImEx flexibility.

The optimal choice of method depends on a variety of factors:

whether the problem admits a natural and effective ImEx and/or multirate splitting,

relative costs of fS(t, y) and fF (t, y) for multirate; availability of optimal algebraic solvers for fI(t, y),

desired solution accuracy, . . .
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Future Work

Much work remains to be done:

Incorporate slow/implicit fluid viscosity and/or heat conduction in demonstration code (to
leverage IMEX-MRI-GARK methods).

Support for additional infinitesimal multirate methods (e.g., MERK, MERB, etc.) within
ARKODE’s MRIStep module.

New Γ(k) and Ω(k) tables (with embeddings) for O
(
H3

)
-O

(
H4

)
MRI-GARK and

IMEX-MRI-GARK methods (and order conditions for O
(
H5

)
or higher).

Robust temporal controllers for nested multirating, h1 > h2 > · · · > hm.

Rigorous stability theory for additively-partitioned ODE systems (not just ẏ =
∑

k λky, that
assumes simultaneous diagonalizability).

Robust (perhaps automated) approaches for determining additive splittings f(t, y) =
∑
k

f{k}(t, y).
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