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Multiphysics Scientific Simulations

In recent decades computation has rapidly assumed its role as the third pillar of the scientific method [Vardi,

Commun. ACM, 53(9):5, 2010]:

Simulation complexity has evolved from simplistic calculations of only 1 or 2 basic equations, to massive
models that combine vast arrays of processes.

Early algorithms could be analyzed using standard techniques, but mathematics has not kept up with the
fast pace of scientific simulation development.

Presently, many numerical analysts construct elegant solvers for models of limited practical use, while
computational scientists “solve” highly-realistic systems using ad hoc methods with questionable reliability.

We are working to bridge this gap between mathematical theory and computing practice.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Climate – Energy Exascale Earth System Model (E3SM)

Motivation: 2013 DOE report on need for climate model predictions of
energy sector impacts:

air and water temperature trends

water availability

storms and heavy precipitation

coastal flooding and sea-level rise

Mission (https://e3sm.org/about/vision-and-mission)

integrate advanced models and algorithms to push the
high-resolution frontier

bridge the gap in modeling scales and processes to include natural,
managed and man-made systems

develop ensemble modeling strategies to quantify uncertainty
https://e3sm.org

[In collab. w/ D. Gardner, C. Vogl & C. Woodward (LLNL); A. Steyer & M. Taylor (SNL), P. Ullrich & J. Guerra (UC Davis)]

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://e3sm.org/about/vision-and-mission
https://e3sm.org


D.R. Reynolds 7/37

Motivation “Flexible” Integrators Applications Conclusions

Nonhydrostatic Atmospheric Models

Increased computational power enables spatial resolutions beyond
the hydrostatic limit.

Nonhydrostatic models consider the 3D compressible Navier Stokes
equations; these support acoustic (sound) waves.

Acoustic waves have a negligible effect on climate, but travel much
faster than convection (343 m/s vs 100 m/s horizontal and 1 m/s
vertical), leading to overly-restrictive explicit stability restrictions.

To overcome this stiffness, nonhydrostatic models utilize split-explicit, implicit-explicit, or fully implicit
time integration.

Additionally, climate “dycores” are coupled to myriad other processes (ocean, land/sea ice, . . . ), each
evolving on significantly different time scales.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Nonhydrostatic Formulation (Tempest) [Gardner, Guerra, Hamon, R., Ullrich & Woodward, 2018]

Tempest is an experimental dycore used for method development; it considers 5 governing [hyperbolic]
equations in an arbitrary coordinate system:
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∂t
= −

1

J

∂

∂α
(Jρuα)−

1

J

∂

∂β

(
Jρuβ

)
−

1

J

∂

∂ξ

(
Jρuξ

)
∂uα

∂t
= −

∂

∂α
(K + Φ)− θ

∂Π

∂α
+ (η × u)α

∂uβ

∂t
= −

∂

∂β
(K + Φ)− θ

∂Π

∂β
+ (η × u)β(

∂r

∂ξ

)
∂w

∂t
= −

∂

∂ξ
(K + Φ)− θ

∂Π

∂ξ
+ uα

∂uα

∂ξ
+ uβ

∂uβ

∂ξ
− uα

∂uξ

∂α
− uβ

∂uξ

∂β

∂θ

∂t
= −uα

∂θ

∂α
− uβ

∂θ

∂β
− uξ

∂θ

∂ξ
,

where ρ is the density, (uα, uβ) are the horizontal velocity, w is the vertical velocity, and θ is the
potential temperature. Key: horizontal propagation and vertical propagation.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://www.geosci-model-dev.net/11/1497/2018/
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Nonhydrostatic Formulation (HOMME-NH) [Vogl, Steyer, R., Ullrich & Woodward, 2019]

HOMME-NH will be the “production” dycore in E3SM v2 responsible for global atmospheric flow:
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where π is hydrostatic pressure, η is vertical coordinate, u and w are horizontal and vertical velocities,
θ is potential temperature, and φ is geopotential. Key: hydrostatic model and nonhydrostatic terms.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://arxiv.org/abs/1904.10115
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Cosmic Reionization – The Origins of the Universe

After the Big Bang, primordial matter
(96% dark matter, 2.92% H, 1% He) was
strewn throughout the universe.

Gravitational attraction condensed this
into the “cosmic web,” the large-scale
structure that connects/creates galaxies.

[http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118]

Each bright spot above is an entire galaxy; purple filaments show where material connects these.
To the eye, only the galaxies are visible.

This visualization spans 134 Mpc (437 million light-years) per side.

[In collab. w/ M. Norman & J. Bordner (UCSD), B. O’Shea (MSU), J. Wise (GA Tech) and the rest of the ENZO team]

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
file:///Volumes/Home/dreynolds/Talks/MSState_2019/LocFigs/cosmic_web-large.mp4
http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118
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Cosmology Multiphysics Model [Bryan et al., 1995; R. et al., 2009; Norman, R. & So, 2009; Bryan et al., 2014]

Cold dark matter motion (k = 1, . . . , Nd), cosmological expansion:

q′d,k(t) = vd,k, v′d,k(t) = − 1
md,k

∇φ,
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)
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3
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.

Hydrodynamic motion (conservation of mass, momentum and energy):
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Multi-frequency radiation transport & chemical ionization:

∂tEν +∇ · (Eνvb)−∇ · (D∇Eν) = νa′

a
∂νEν − 3a′

a
Eν + ην − cκνEν , ν = 1, . . . , Nf ,

∂tni +∇ · (nivb) = −niΓphi + αreci,j nenj , i, j = 1, . . . , Nc.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1016/j.jcp.2009.06.006
http://link.aip.org/link/?APCPCS/1171/260/1
http://iopscience.iop.org/0067-0049/211/2/19/article
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Fusion Plasma Simulations

Large-scale, nonlinear simulation of fusion plasmas is critical for the design of next-generation confinement
devices.

Fusion easy to achieve but difficult to stabilize, as needed to
increase yield and protect device.

Linear modes present in fluid models are typically
well-controlled.

Most current work focuses on disruptions due to nonlinear
instabilities and kinetic effects.

Turbulence in the sharp edge disrupts the core, but is difficult

to simulate:

must accurately couple ions and electrons in high
dimensions: x ∈ Rd, v ∈ Rd, t ∈ R; d = {2, 3}
mass/velocity differences result in 100×
spatial/temporal scale separation.

MGK+Partnership+(mgkscidac.org)

• Achieve&profound&scientific&
breakthroughs&on&‘frontier’&
multiscale turbulent&transport&
problems

• Develop&practical&new&
methods&to&bring&these&
problems&within&the&scope&of&
whole&device&modeling

• Ultimately:&integrate&with&
AToM framework

mgkscidac.orgGENE gyrokinetic simulation of core turbulence

[In collab. w/ D. Ernst (MIT); M. Francisquez (PPPL) and the rest of the MGK SciDAC Project]

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://mgkscidac.org
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Multiscale Model for Ion/Electron Turbulence Interactions

Before tackling full 5D gyrokinetic turbulence with GENE, we are investigating high-order multirate
methods for a reduced pseudospectral model for ITG/ETG turbulence:

∂ne
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∂T⊥e
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[
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2
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]
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1

τ
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)
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We evolve equations in frequency space, but convert to/from real space for computing the nonlinear
Poisson brackets.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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A Sampling of Multiphysics Challenges

These multiphysics problems exhibit key characteristics that challenge traditional numerical methods:

“Multirate” structure: different processes evolve on distinct time scales, but these are too close to
analytically reformulate (e.g., via steady-state approximation).

The existence of stiff components prohibits fully explicit methods.

Nonlinearity and insufficient differentiability challenge fully implicit methods.

“Multiscale” structure: some spatial regions may be well-modeled via coarse meshes, while others require
high resolution.

Extreme parallel scalability demands optimal algorithms. While robust and scalable algebraic solvers exist
for some pieces (e.g., FMM for particles, multigrid for diffusion), none optimal for the full combination.

We have obviously not solved all of the above problems, I only point them out to highlight the work ahead.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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“Classical” Time Integrators (and their deficiencies)

Historically, IVP research has focused on two simple problem types:

y′(t) = f(t, y(t)), y(t0) = y0 [ODE]

0 = F (t, y(t), y′(t)), y(t0) = y0, y′(t0) = y′0 [DAE]

Corresponding solvers thus enforced overly-rigid standards:

Treat all components implicitly or explicitly, without IMEX flexibility.

Fully explicit: “stiff” components require overly-small time steps for stability.

Fully implicit: scalable/robust algebraic solvers difficult for highly nonlinear or nonsmooth terms.

Inflexible vector/matrix/solver data structures. While contiguous 1D vectors and matrices work well in
LAPACK/MATLAB, these are rarely optimal for large-scale, multiphysics problems.

Software was hard-coded for specific methods and parameters – while these are decent for most problems,
they’re rarely optimal for any.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Ad Hoc Algorithms Pervade Scientific Computing Applications

On the other hand, practitioners frequently “split” their problems and solve each component separately over a
time step [t0, t0 + h], e.g. a “Lie-Trotter” splitting:

y′(t) = f1(t, y) + · · ·+ fm(t, y), y(t0) = y0

≈
y′1(t) = f1 (t, y1) , y1(t0) = y0,

...

y′m(t) = fm (t, ym) , ym(t0) = ym−1(t0 + h),

While each component may be tackled independently (or even subcycled) using, e.g., something from
“Numerical Recipes,” the overall approach suffers from:

Low accuracy – typically only O(h); symmetrization/extrapolation may improve this but at significant cost
[Ropp, Shadid & Ober 2005].

Poor/unknown stability – even when each part utilizes a ‘stable’ step size, the combined problem may
admit unstable modes [Estep et al., 2007].

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://www.amazon.com/exec/obidos/ASIN/052143064X/fortran-wiki-20


D.R. Reynolds 17/37

Motivation “Flexible” Integrators Applications Conclusions

Filling this ‘Disconnect’ between Mathematical Software and Multiphysics Practice

We work to construct flexible time integration methods, disseminated as robust open-source software,
to improve temporal integration of multiphysics systems.

Goals:

Stability/accuracy for each component, as well as inter-physics couplings.

Custom/flexible time step sizes for distinct components.

Robust temporal error estimation & adaptivity of step size(s).

Built-in support for spatial adaptivity.

Ability to apply optimally efficient and scalable solver algorithms.

Support for experimentation and testing between methods and solution algorithms.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Additively-split Multiphysics Models

Modern time-integration methods focus on high-order accuracy and increased numerical stability for
multiphysics systems in additively-partitioned form:

y′(t) = f1(t, y) + · · ·+ fm(t, y), y(t0) = y0.

Note that ‘variable partitioned’ problems,

y′1(t) = f̂1 (t, y) , y1(t0) = y1,0,

...

y′m(t) = f̂m (t, y) , ym(t0) = ym,0,

are automatically included through appropriate partitioning of y =
[
y1 · · · ym

]T
and

fi(t, y) =
[
0 · · · 0 f̂i(t, y) 0 · · · 0

]T
.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Additive Runge–Kutta (ARK) Methods [Ascher et al. 1997; Araújo et al. 1997; Kennedy & Carpenter 2003; . . . ]

In 2014, we released the arkode package as part of sundials, providing adaptive ARK methods for mixed
implicit-explicit calculations:

M(t) y′(t) = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

M is any nonsingular linear operator (mass matrix, typically M = I, as used below),

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

Combine two s-stage RK methods; denoting hn = tn+1 − tn, tEn,j = tn + cEj hn, tIn,j = tn + cIjhn:

zi = yn + hn

i−1∑
j=1

aEi,jf
E(tEn,j , zj) + hn

i∑
j=1

aIi,jf
I(tIn,j , zj), i = 1, . . . , s,

yn+1 = yn + hn

s∑
j=1

[
bEj f

E(tEn,j , zj) + bIjf
I(tIn,j , zj)

]
(solution)

ỹn+1 = yn + hn

s∑
j=1

[
b̃Ej f

E(tEn,j , zj) + b̃Ijf
I(tIn,j , zj)

]
(embedding)

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Solving each stage zi, i = 1, . . . , s

Per-stage cost is commensurate with implicit Euler for y′(t) = fI(t, y) – solve a root-finding problem:

0 = Gi(z) =
[
z − hnaIi,ifI(tIn,i, z)

]
−

[
yn + hn

i−1∑
j=1

(
aEi,jf

E(tEn,j , zj) + aIi,jf
I(tIn,j , zj)

)]

If fI(t, y) is linear in y then this is a large-scale linear system for each zi.

Else Gi is nonlinear, requiring an iterative solver – arkode supports Newton, accelerated
fixed-point, or customized (problem-specific) methods.

In recent years, we have enhanced arkode in a number of ways to now include a variety of ‘steppers’:

arkstep: this supports all functionality originally included in arkode (ARK methods).

erkstep: tuned for highly efficient explicit Runge–Kutta methods.

mristep: new ‘multirate’ time stepping module (more on this in a few slides).

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Exponential Rosenbrock (ExpRB) Methods [Hochbruch et al., 2009; Luan & Ostermann, 2014]

Exponential Rosenbrock methods consider a specific additive splitting of the IVP:

y′(t) = f(y) = J (y)y +N (y), t ∈ [t0, tf ], y(t0) = y0,

J (y) ≡ ∂f(y)
∂y

is the Jacobian of the full right-hand side, f [assumed stiff], and

N (y) ≡ f(y)− J (y)y contains any remaining nonlinearities [assumed nonstiff].

Analytical solution over t ∈ [tn, tn + h] uses the variation-of-constants formula:

y(t) = e (t−tn)J (yn)y(tn) +

∫ t

0
e (t−τ)J (yn)N (u(tn + τ))dτ .

By approximating the integral via quadrature, an s-stage ExpRB method may be written:

zi = yn + cihϕ1(cihJn)f(yn) + h

i−1∑
j=2

aij(hJn)(Nn(zj)−Nn(yn)),

yn+1 = yn + hϕ1(hJn)f(yn) + h
s∑
i=2

bi(hJn)(Nn(zi)−Nn(yn))

where z1 = yn, Jn ≡ J (yn), Nn ≡ N (yn), and ϕ1(z) ≡ (ez − 1)/z.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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ExpRB Implementation [Luan & Ostermann, 2014; Niesen & Wright, 2012; Luan, Pudykiewicz & R., 2019]

aij(hJn), bi(hJn) are linear comb. of the matrix functions ϕk(cihJn), ϕk(hJn), resp.; defined recursively via

ϕk+1(z) ≡
ϕk(z)− 1/k!

z
, k ≥ 1.

The primary challenge in applying ExpRB methods is efficiently computing linear combinations of these matrix
functions multiplied by vectors,

wk =

p∑
l=0

ϕl(ck A) vl, k = 2, . . . , s,

where each ck ∈ (0, 1] denotes a “time” scaling factor used for the output wk.

Modern approaches exploit the structure of these ϕk functions to construct efficient implementations that
require no matrix factorizations.

In 2019, we released a prototype MATLAB implementation tuned for ExpRB methods as the
phipm simul iom algorithm. We hope to extend this to a new arkode module in the near future.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1016/j.jcp.2018.10.018
https://github.com/drreynolds/Phipm_simul_iom
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Multirate Infinitesimal Step (MIS/MRI) methods [Schlegel et al. 2009; Sandu 2019; . . . ]

MRI methods arose in the numerical weather prediction community. This generic infrastructure supports up to
O
(
h4
)

methods for multirate problems:

y′(t) = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fS(t, y) contains the “slow” dynamics, integrated with time step H.

fF (t, y) contains the “fast” dynamics, integrated with time step h� H

The slow component is integrated using an “outer” RK method, while the fast component is advanced
between slow stages by solving a modified ODE with a subcycled “inner” RK method.

Highly efficient – requires only a single traversal of [tn, tn+1] for high order methods.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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MRI Algorithm

Denoting yn ≈ y(tn), a single step yn → yn+1 proceeds as follows:

1. Set z1 = yn

2. For each slow Runge-Kutta stage zi, i = 2, . . . , s+ 1:

a) Let v(tn,i−1) = zi−1 and r(τ) = 1
∆ci

i∑
j=1

γi,j

(
τ−tn,i−1

∆ciH

)
fS (tn,j , zj)

b) Solve the fast ODE: v′(τ) = fF (τ, v) + r(τ), for τ ∈ [tn,i−1, tn,i]

c) Set zi = v(tn,i)

3. Set yn+1 = zs+1

where the outer stage times are tn,j = tn + cjH and ∆ci = ci − ci−1.

γi,j(θ) is a polynomial in θ, with coefficients that derive from the slow Runge–Kutta method.

When ci = ci+1, the IVP “solve” reduces to a standard ERK/DIRK Runge–Kutta update.

Step 2b may use any applicable algorithm of sufficient accuracy.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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mristep Module in arkode

The current mristep module in arkode (v4.3.0) supports:

O
(
H2
)

and O
(
H3
)

order explicit-slow MIS methods with fixed slow step sizes.

Fast time scale is evolved with arkstep (explicit, implicit or IMEX), with adaptive or fixed step sizes.

Upcoming arkode release will support solve-decoupled implicit methods: alternate between subcycling steps
(γi,i = 0,∆ci 6= 0) and standard DIRK steps (γi,i 6= 0,∆ci = 0).

Currently implementing up to O
(
H4
)

IMEX-MRI methods that support IMEX treatment of slow time scale
[Chinomona and R., 2020]:

y′(t) = fE(t, y) + fI(t, y) + fF (t, y), y(t0) = y0.

Right: 1D advection-diffusion-reaction example – IMEX-MRI shows
significant efficiency improvements over Lie-Trotter and Strang-Marchuk.

Also deriving higher-order multirate approaches:

Multirate Exponential Runge–Kutta (MERK) allow O
(
H5
)

[Luan, Chinomona and R., 2020]

Multirate Exponential Rosenbrock (MERB) allow O
(
H6
)

[Luan, Chinomona and R., in prep]
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sundials’ Modular Design & Control Inversion

Control passes between integrator, solvers, and application code as the integration progresses:

Control passes from
the integrator to the
solvers and application
code as the
integration progresses

Time integrator and
nonlinear solver are
agnostic of vector data
layout and specific
solvers used

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Multiphysics Enhancements

sundials includes numerous additional enhancements for multiphysics codes:

Packages modify solution data only through the NVector class:

Several optional implementations are released with sundials:

CUDA, RAJA, and OpenMPDEV (target offload) vectors provide GPU support
(HIP, RAJA+HIP and Kokkos are coming soon).

Parallel, ParHyp (hypre), PETSc, and Trilinos modules are MPI distributed.

ManyVector and MPIPlusX modules provide support for hybrid computation.

Application-specific vectors, matrices, linear and even nonlinear solvers may be easily supplied.

Current release includes fully-featured Fortran 2003 interfaces for all packages.

arkode-specific multiphysics enhancements:

Many built-in RK tables, adaptivity controllers & implicit predictors; supports user-supplied modules.

Ability to resize data structures based on changing IVP size (AMR).

All internal solver parameters are user-modifiable.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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ARK IMEX methods in climate [Gardner et al., 2018; Vogl et al., 2019; Ullrich et al., 2018]

We explored optimal ARK IMEX methods for next-generation
nonhydrostatic climate codes Tempest & HOMME-NH.

Examined:

5 IMEX splittings; 21 published & 13 custom ARK
methods (optimized explicit stability along imaginary axis).

Various algebraic solvers for implicit components.

Effects of “standard” stabilization approaches
(hyperviscosity, vertical remap).

90°S

60°S

30°S

0°

30°N

60°N

90°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

Temperature

234 239 243 247 252 256 260 265 269

K

Findings:

arkode’s modular structure allowed rapid exploration of “solver space.”

Stability ∝ implicitness, but horizontally implicit terms significantly increase cost.

Best overall ARK methods were those we designed for this application.

Linearly-implicit solves work for current h, but nonlinearity increasingly relevant at desired h.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://www.geosci-model-dev.net/11/1497/2018/
https://arxiv.org/abs/1904.10115
https://doi.org/10.1016/j.jcp.2018.06.035
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ExpRB methods with the 2D shallow water equations [Luan, Pudykiewicz & R., 2019]

Simplified 2D SWE model used in climate and weather prediction:

∂u

∂t
= −(∇n × u + fn)× u−∇

(
|u|2

2
+ g(h+ hs)

)
,

∂h

∂t
= −∇ · (hu),

u is the velocity, h is the fluid thickness, hs is the surface level, g is the gravitational
acceleration, and f is the Coriolis parameter.

ExpRB methods achieved:

∼700x increase in usable step size over
state-of-the-practice IMEX methods,

∼3x increase over previous state-of-the-art
exponential RK methods [Gaudreault &

Pudykiewicz, 2016].
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Multirate reacting flow [R., Gardner, Balos & Woodward, 2019]

arkode demonstration problem: simulates 3D nonlinear compressible Euler equations combined with stiff
chemical reactions for a low-density primordial gas, present in models of the early universe.

∂tw = −∇ · F(w) + R(w) + G(x, t), w(t0) = w0,

w: density, momenta, total energy, and chemical densities (10)
F: advective fluxes; R: reaction terms; and G: external forces

w is stored as a ManyVector:

Software layer to treat a collection of vector
objects as a single cohesive vector

Does not touch any vector data directly

Simplifies partitioning of data among
computational resources, e.g., CPUs & GPUs

May also combine distinct MPI
intracommunicators together in a
multiphysics simulation.

𝜌 𝑚! 𝑚"𝜌 𝑚# 𝑒$𝑒$𝑚# 𝜌 𝑚"𝑚! 𝑚" 𝑚#𝑒$ 𝑚!

𝒄𝒄𝒄

𝒘 𝒘 𝒘

Task 0 Task 1 Task 2

w is a collection of distributed vectors (density ρ, momentum mi,
and total energy eT ) and local vectors c (chemical densities).

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://arxiv.org/abs/1909.12966
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Multirate reacting flow – parallel scalability [R., Gardner, Balos & Woodward, 2019]

Explicit (slow) advection and implicit (fast) reactions; weak scaling with single rate and multirate methods:

O
(
H3
)

single rate IMEX method using step sizes set by the reaction time scale

O
(
H3
)

2-rate method with a multirate factor H/h = 1000

∼10x speedup with multirate
90% weak scaling efficiency using 80 to
138,240 CPU cores of OLCF Summit

Multirating allows advection (which requires MPI) to run at a far larger time step size than that required for the
single rate IMEX method to maintain stability, leading to significant speedup.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://arxiv.org/abs/1909.12966
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GPU Reactive Flow Collaborations with AMReX Project – PeleC

PeleC combustion simulation of a perturbed premixed H2-air flame, using erkstep as the fast
chemistry integrator in each box of a block-structured AMR mesh:

[Graphics courtesy of Hari Sitaraman (NREL); Implementation courtesy of Anne Felden (LBNL) and Hari Sitaraman (NREL)]

GPU performance compared to a single CPU core:

20x faster with 8,192 cells (81,920 ODEs) per box

70x faster with 65,536 cells (655,360 ODEs) per box

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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GPU Reactive Flow Collaborations with AMReX Project – PelePhysics

Simulation of a methane or n-dodecane mixture with oxygen and nitrogen (23 species), comparing sundials
integrators for the chemical network within boxes of 83, 163, or 323 finite volume cells of varying stiffness:

[Graphics courtesy of Hari Sitaraman (NREL); Implementation courtesy of Anne Felden (LBNL) and Hari Sitaraman (NREL)]

One instance of the integrator is applied to all cells in an AMR box.

cvode runs compare matrix-free iterative GMRES vs NVIDIA batched QR linear solvers.

At 323 GPU/CPU speedups are: cvode sparse (∼15x), cvode iterative (∼90x), erkstep (∼200x).

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Conclusions

Large-scale multiphysics problems:

Nonlinear, interacting models pose key challenges to stable, accurate and scalable simulation.

Typically large data requirements, requiring scalable/optimal approximation methods.

While individual physical processes admit ‘optimal’ algorithms and time scales, these rarely agree.

Most classical methods invented for idealized problems; perform poorly (or fail) on ‘real world’ applications.

We aims to develop flexible solvers, that tune the algorithms to the problem (instead of vice-versa), and to
implement these in high-quality, open-source software that directly impacts multiphysics applications:

Method derivation:

Stable, accurate and highly efficient multirate methods.

Scalable, accurate and practical methods for exponential integrators.

Software:

Support explicit, implicit and IMEX single-rate and multirate methods.

Strive for flexibility, enabling user-supplied components that can be optimized for a given problem.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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