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Multiphysics Scientific Simulations

In recent decades computation has rapidly assumed its role as the third pillar of the
scientific method [Vardi, Commun. ACM, 53(9):5, 2010]:

Simulation complexity has evolved from simplistic calculations of only 1 or 2
basic equations, to massive models that combine vast arrays of processes.

Early algorithms could be analyzed using standard techniques, but mathematics
has not kept up with the fast pace of scientific simulation development.

Presently, many numerical analysts construct elegant solvers for models of
limited practical use, while computational scientists “solve” highly-realistic
systems using ad hoc methods with questionable reliability.

I work to bridge this gap between mathematical theory and computing practice.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://dl.acm.org/citation.cfm?doid=1810891.1810892
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Climate – Energy Exascale Earth System Model (E3SM)

Motivation: 2013 DOE report on need for climate
model predictions of energy sector impacts:

air and water temperature trends

water availability

storms and heavy precipitation

coastal flooding and sea-level rise

Mission (https://e3sm.org/about/vision-and-mission)

integrate advanced models and algorithms to push
the high-resolution frontier

bridge the gap in modeling scales and processes to
include natural, managed and man-made systems

develop ensemble modeling strategies to quantify
uncertainty https://e3sm.org

[In collaboration w/ D. Gardner (LLNL), A. Steyer (SNL), M. Taylor (SNL), P. Ullrich (UC Davis),
C. Vogl (LLNL) & C. Woodward (LLNL)]

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://e3sm.org/about/vision-and-mission
https://e3sm.org
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Nonhydrostatic Atmospheric Models

Increased computational power enables spatial
resolutions beyond the hydrostatic limit.

Nonhydrostatic models consider the 3D
compressible Navier Stokes equations; these
support acoustic (sound) waves.

Acoustic waves have a negligible effect on climate,
but travel much faster than convection (343 m/s
vs 100 m/s horizontal and 1 m/s vertical), leading
to overly-restrictive explicit stability restrictions.

To overcome this stiffness, nonhydrostatic models utilize split-explicit,
implicit-explicit, or fully implicit time integration.

Additionally, climate “dycores” are coupled to myriad other processes (ocean,
land/sea ice, . . . ), each evolving on significantly different time scales.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Nonhydrostatic Formulation (Tempest) [Gardner, Guerra, Hamon, R., Ullrich & Woodward, 2018]

Tempest is an experimental dycore used for method development; it considers 5
governing [hyperbolic] equations in an arbitrary coordinate system:
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where ρ is the density, (uα, uβ) are the horizontal velocity, w is the vertical
velocity, and θ is the potential temperature.

Key: horizontal propagation and vertical propagation.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://www.geosci-model-dev.net/11/1497/2018/
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Nonhydrostatic Formulation (HOMME-NH) [Vogl, Steyer, R., Ullrich & Woodward, 2019]

HOMME-NH will be the “production” dycore in E3SM v2 responsible for
global atmospheric flow:
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where π is hydrostatic pressure, η is vertical coordinate, u and w are horizontal
and vertical velocities, θ is potential temperature, and φ is geopotential.

Key: hydrostatic model and nonhydrostatic terms.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://arxiv.org/abs/1904.10115
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Cosmic Reionization – The Origins of the Universe

After the Big Bang, primordial
matter (96% dark matter,
2.92% H, 1% He) was strewn
throughout the universe.

Gravitational attraction
condensed this into the
“cosmic web,” the large-scale
structure that
connects/creates galaxies.

[http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118]

Each bright spot above is an entire galaxy; purple filaments show where
material connects these. To the eye, only the galaxies are visible.

This visualization spans 134 Mpc (437 million light-years) per side.

[In collaboration w/ M. Norman (UCSD), B. O’Shea (MSU), J. Wise (GA Tech) and the ENZO team]

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
file:///Volumes/Home/dreynolds/Talks/MSState_2019/LocFigs/cosmic_web-large.mp4
http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=10118
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Cosmic Reionization – Timeline

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
http://science.nasa.gov/missions/wmap/
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Cosmology Multiphysics Model [Bryan et al., 1995; R. et al., 2009; Norman, R. & So, 2009; Bryan et al., 2014]

We model early universe cosmology with the following equations (from slow → fast).

Cold dark matter motion (k = 1, . . . , Nd), cosmological expansion:

q̇d,k = vd,k, v̇d,k = − 1
md,k

∇φ,

∇2φ = 4πG
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ä
a
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3a3
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)
+ Λ

3
, x ≡ r

a(t)
.

Hydrodynamic motion (conservation of mass, momentum and energy):
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Radiation chemistry (ν = 1, . . . , Nf , i, j = 1, . . . , Nc):

∂tEν +∇ · (Eνvb)−∇ · (D∇Eν) = νȧ
a
∂νEν − 3ȧ

a
Eν + ην − cκνEν ,

∂tni +∇ · (nivb) = −niΓphi + αreci,j nenj .

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1016/j.jcp.2009.06.006
http://link.aip.org/link/?APCPCS/1171/260/1
http://iopscience.iop.org/0067-0049/211/2/19/article
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Fusion Plasma Simulations

Large-scale, nonlinear simulation of fusion plasmas is critical for the design of
next-generation confinement devices.

Fusion easy to achieve but difficult to stabilize,
as needed to increase yield and protect device.

Linear modes present in fluid models are
typically well-controlled.

Most current work focuses on disruptions due
to nonlinear instabilities and kinetic effects.

Turbulence in the sharp edge controls the

core, but is difficult to simulate:

must accurately couple ions and electrons
in high dimensions: x ∈ Rd, v ∈ Rd,
t ∈ R; d = {2, 3}
mass/velocity differences result in 100×
spatial/temporal scale separation.

MGK+Partnership+(mgkscidac.org)

• Achieve&profound&scientific&
breakthroughs&on&‘frontier’&
multiscale turbulent&transport&
problems

• Develop&practical&new&
methods&to&bring&these&
problems&within&the&scope&of&
whole&device&modeling

• Ultimately:&integrate&with&
AToM framework

mgkscidac.orgGENE gyrokinetic simulation of core turbulence

[In collaboration w/ D. Ernst, M. Francisquez, MGK SciDAC Project]

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://mgkscidac.org
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Visco-Resistive MHD Model [R., Samtaney & Tiedeman, 2012; R. & Samtaney, 2012]

Even fluid-only models present multiphysics challenges. Consider a “simple”
4-dimensional model of tokamak plasma:

∂tU + 1
rJ

[
∂ξ(rF̃(U)) + ∂η(rH̃(U)) + ∂ϕ(G̃(U))

]
= S(U) +∇ · F̃d(U),

where U = (ρ, ρu,B, e)T .

Left: toroidal tokamak
domain, with slice
removed to show grid
structure.

Right: poloidal
cross-section.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
http://iopscience.iop.org/1749-4699/5/1/014003/
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Visco-Resistive MHD Model (continued)

The hyperbolic fluxes are given by

F̃ = J (∂rξ F + ∂zξ H) = ∂ηz F− ∂ηr H,

H̃ = J (∂rη F + ∂zη H) = ∂ξz F− ∂ξr H,

G̃ = JG,

where ξ = ξ(r, z), η = η(r, z) and J = (∂ξr)(∂ηz)− (∂ηr)(∂ξz)
map from cylindrical to tokamak coordinates. Here,

r
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)
,
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(
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)
,
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(
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)
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p̃ = p+ B·B
2

, e = p
γ−1

+ ρu·u
2

+ B·B
2

, and ∇ · Fd(U) adds a small amount

of diffusion (viscosity, resistivity, heat conduction).

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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A Sampling of Multiphysics Challenges

These multiphysics problems exhibit key characteristics that challenge “traditional”
numerical methods:

“Multirate” structure: different processes evolve on distinct time scales, but these
are too close to analytically reformulate (e.g., via steady-state approximation).

The existence of stiff components prohibits fully explicit methods.

Nonlinearity and insufficient differentiability prohibit fully implicit methods.

“Multiscale” structure: some spatial regions may be well-modeled via coarse
meshes, while others require high resolution.

Need for extreme parallel scalability requires use of optimal algorithms. While
robust and scalable algebraic solvers exist for some pieces (e.g., FMM for
particles, multigrid for diffusion), none yet apply to the full combination.

I make no claim to have solved all of the above problems, only to point out these
challenges and state that work is needed to address each.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Need for Flexible Methods and Robust Software Libraries

With respect to their temporal aspects, multiphysics problems have significant
(and sometimes contradictory) needs:

Stability/accuracy for each component, as well as inter-physics couplings

Custom/flexible time step sizes for distinct components

Robust temporal error estimation & adaptivity of step size(s)

Built-in support for spatial adaptivity

Ability to apply optimally efficient and scalable solver algorithms

Support for experimentation and testing between methods and solution
algorithms

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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“Classical” Time Integrators (and their deficiencies)

Historically, ODE research has focused on two simple problem types:

ẏ(t) = f(t, y(t)), y(t0) = y0 [ODE]

0 = F (t, y(t), ẏ(t)), y(t0) = y0, ẏ(to) = ẏ0 [DAE]

Corresponding solvers thus enforced overly-rigid standards:

Treat all components implicitly or explicitly, without IMEX flexibility.

Fully explicit: “stiff” components require overly-small ∆t for stability.

Fully implicit: highly nonlinear or nonsmooth terms present difficulties for
scalable/robust algebraic solvers.

Inflexible vector/matrix/solver data structures. While contiguous 1D vectors and
matrices work well in LAPACK/MATLAB, these are rarely optimal for large-scale,
multiphysics problems.

Software was hard-coded for specific methods and parameters – while these are
decent for most problems, they’re rarely optimal for any.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Ad Hoc Algorithms Pervade Scientific Computing Applications

Practitioners, on the other hand, frequently “split” their problems and solve each
component separately over a time step [t0, t0 + ∆t]:

ẏ(t) = f1(t, y) + · · ·+ fm(t, y), y(t0) = y0

≈

ẏ(1)(t) = f1

(
t, y(1)

)
, y(1)(t0) = y0,

...

ẏ(m)(t) = fm
(
t, y(m)

)
, y(m)(t0) = y(m−1)(t0 + ∆t),

While each component may be tackled independently (or even subcycled) using, e.g.,
something from “Numerical Recipes,” the resulting methods suffer from:

Low accuracy – typically O(h)-accurate; symmetrization/extrapolation may
improve this but at significant cost [Ropp, Shadid & Ober 2005].

Poor/unknown stability – even when each part utilizes a ‘stable’ step size, the
combined problem may admit unstable modes [Estep et al., 2007].

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://www.amazon.com/exec/obidos/ASIN/052143064X/fortran-wiki-20
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Meeting in the middle – modern methods for split systems

In recent years, applied mathematics has begun to catch up to standard
scientific computing practice, designing accurate and stable time integration
methods for split multiphysics systems in both additively-partitioned form:

ẏ(t) = f1(t, y) + · · ·+ fm(t, y), y(t0) = y0

and in variable-partitioned form:

ẏ1(t) = f1 (t, y) , y1(t0) = y1,0

...

ẏm(t) = fm (t, y) , ym(t0) = ym,0,

where y =
[
y1 · · · ym

]T
.

In the next slides I highlight a number of these methods, discussing my work in
each.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Additive Runge–Kutta (ARK) Methods [Ascher et al. 1997; Araújo et al. 1997; . . . ]

In 2014, I released the ARKode package as a component of sundials, providing
adaptive ARK methods that support up to two split components: explicit and implicit,

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

M is any nonsingular linear operator (mass matrix, typically M = I),

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

Combine two s-stage RK methods; denoting t∗n,j = tn + c∗jhn, hn = tn+1 − tn:

Mzi = Myn + hn

i−1∑
j=1

aEi,jf
E(tEn,j , zj) + hn

i∑
j=1

aIi,jf
I(tIn,j , zj), i = 1, . . . , s,

Myn+1 = Myn + hn

s∑
j=1

[
bEj f

E(tEn,j , zj) + bIjf
I(tIn,j , zj)

]
(solution)

Mỹn+1 = Myn + hn

s∑
j=1

[
b̃Ej f

E(tEn,j , zj) + b̃Ijf
I(tIn,j , zj)

]
(embedding)

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Solving each stage zi, i = 1, . . . , s

Each stage is implicitly defined via a root-finding problem:

0 = Gi(z)

=
[
z − hnaIi,ifI(tIn,i, z)

]
−

yn + hn

i−1∑
j=1

(
aEi,jf

E(tEn,j , zj) + aIi,jf
I(tIn,j , zj)

)
If fI(t, y) is linear in y then we must solve a linear system for each zi,

Else Gi is nonlinear, requiring an iterative solver – ARKode options include:

Newton: inexact or ‘standard’ (depends on linear solver),

Scaled, preconditioned, Krylov; “matrix-free” available.

user-supplied to exploit linear system structure

Fixed-point, with optional Anderson acceleration.
User-supplied (new feature).

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Multiphysics Flexibility Enhancements

ARKode includes numerous additional enhancements for multiphysics codes:

All solvers (except direct linear) formulated via generic vector operations:

Numerous supplied vector implementations: serial, MPI, OpenMP,
PETSc, hypre, CUDA, Raja, Trilinos, . . .

Application-specific vectors may be easily supplied.

Variety of built-in Butcher tables (ERK, DIRK, IMEX ARK) and temporal
adaptivity controllers; either may be user-supplied.

Variety of built-in implicit predictor algorithms.

Ability to resize data structures based on changing IVP size.

All internal solver parameters are user-modifiable.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Nonhydrostatic Climate [Gardner et al., 2018; Vogl et al., 2019; Ullrich et al., 2018]

We have applied ARKode to a variety of
large-scale applications, including the
climate codes Tempest & HOMME-NH
(equations shown earlier).

90°S

60°S

30°S

0°

30°N

60°N

90°N

180° 180°120°W 60°W 0° 60°E 120°E180° 180°

Temperature

234 239 243 247 252 256 260 265 269

K
Examined:

5 IMEX splittings & 21 published ARK methods for accuracy/stability.

13 custom ARK methods that optimize explicit stability along the imaginary axis.

Various (non)linear solver algorithms for implicit components.

Effects of “standard” stabilization approaches (hyperviscosity, vertical remap).

Findings:

ARKode’s modular structure allowed rapid exploration of “solver space.”

Stability ∝ implicitness, but horizontally implicit terms significantly increase cost.

Best overall ARK methods were those we designed for this application.

Linearly-implicit solves fine for current hn, but nonlinear effects become more
relevant at desired hn.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://www.geosci-model-dev.net/11/1497/2018/
https://arxiv.org/abs/1904.10115
https://doi.org/10.1016/j.jcp.2018.06.035
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Exponential Rosenbrock (ExpRB) Methods [Hochbruch et al., 2009; Luan & Ostermann, 2014]

Exponential Rosenbrock methods consider a specific additive splitting of the IVP:

ẏ = f(y) = J (y)y +N (y), t ∈ [t0, tf ], y(t0) = y0,

J (y) ≡ ∂f(y)
∂y

is the Jacobian of f , and

N (y) ≡ f(y)− J (y)y contains the remaining nonlinearities [assumed nonstiff].

This has analytical solution over t ∈ [tn, tn + h]:

y(t) = e (t−tn)J (yn)y(tn) +

∫ t

0
e (t−τ)J (yn)N (u(tn + τ))dτ .

By approximating the integral via quadrature, an s-stage ExpRB method may be
written:

zi = yn + cihϕ1(cihJn)f(yn) + h

i−1∑
j=2

aij(hJn) (Nn(zj)−Nn(yn)) ,

yn+1 = yn + hϕ1(hJn)f(yn) + h
s∑
i=2

bi(hJn)Nn(zi)−Nn(yn)

where z1 = yn, Jn ≡ J (yn), Nn ≡ N (yn), and ϕ1(z) ≡ (ez − 1)/z.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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ExpRB “Coefficients” [Luan & Ostermann, 2014; Gaudreault & Pudykiewicz, 2016; Niesen & Wright, 2012]

The matrix functions aij(hJn) and bi(hJn) are usually linear combinations of
the functions ϕk(cihJn) and ϕk(hJn), resp.; these are defined recursively via

ϕk+1(z) ≡
ϕk(z)− 1

k!

z
, k ≥ 1.

Thus the primary challenge in applying ExpRB methods is to efficiently
compute linear combinations of these matrix functions multiplied by vectors,

wk =

p∑
l=0

ϕl(ck A)vl, k = 2, . . . , s,

where the values ck ∈ (0, 1] denote the “time” scaling factors used for each wk
output. These wk may equivalently be computed as the solutions u(ck) of

u′(t) = Au(t) + v1 + tv2 + · · ·+ tp−1

(p− 1)!
vp, u(0) = v0. (1)

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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Efficient Methods for Computing {wk} [Luan, Pudykiewicz & R., 2019]

Since the {cj} are known a priori, we subcycle (1) over substeps
0 = t0 < t1 < · · · < tK = 1 such that each cj aligns with a tk.

Exploiting various recursion relations, we compute each substep using only a
single ϕk function,

u(tk+1) = τpkϕp(τkA)xp +

p−i∑
j=0

tjk
j!
xj ,

where the vectors xj satisfy another recurrence relation,

x0 = u(tk), xj = Axj−1 +

p−j∑
`=0

t`k
`!
vj+`, j = 1, . . . , p.

In 2018, Luan and I released a MATLAB implementation of this as the
phipm simul iom algorithm. We hope to extend this to a parallel ARKode
module in the near future.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1016/j.jcp.2018.10.018
https://github.com/drreynolds/Phipm_simul_iom
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Application to the 2D Shallow Water equations [Luan, Pudykiewicz & R., 2019]

Simplified 2D model used in climate and weather prediction:

∂u

∂t
= −(∇n × u + fn)× u−∇

(
|u|2

2
+ g(h+ hs)

)
,

∂h

∂t
= −∇ · (hu),

u is the velocity, h is the fluid thickness, hs is the surface level, g
is the gravitational acceleration, and f is the Coriolis parameter.

ExpRB methods achieved:

∼700x increase in usable step
size over state-of-the-practice
IMEX methods,

∼3x increase over previous
state-of-the-art exponential
RK methods [Gaudreault &

Pudykiewicz, 2016].
CPU time (in seconds)
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http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://doi.org/10.1016/j.jcp.2018.10.018


D.R. Reynolds 29/35

Motivation “Flexible” Integrators Conclusions, Etc.

Multirate Infinitesimal Step (MIS) methods [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

MIS methods arose in the numerical weather prediction community. This generic
infrastructure supports O

(
h2
)

and O
(
h3
)

methods for multirate problems:

ẏ = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fF (t, y) contains the “fast” terms; fS(t, y) contains the “slow” terms.

hS > hF , with a time scale separation hS/hF ≈ m.

y is frequently partitioned as well, e.g. y =
[
yF yS

]T
.

The slow component may be integrated using an explicit “outer” RK method,
TO = {A, b, c}, where ci ≤ ci+1, i = 1, . . . , s− 1.

The fast component is advanced between slow stages as the exact solution of a
modified ODE.

Practically, this fast solution is subcycled using an “inner” RK method.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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MIS Algorithm

Denoting yn ≈ y(tn), a single MIS step yn → yn+1 is as follows:

1. Set z1 = yn

2. For each outer Runge-Kutta stage zi, i = 2, . . . , s+ 1:

a) Let v(tn,i−1) = zi−1 and r =
i−1∑
j=1

(
ai,j − ai−1,j

ci − ci−1

)
fS (tn,j , zj)

b) Solve the fast ODE: v̇(τ) = fF (τ, v) + r, for τ ∈ [tn,i−1, tn,i]

c) Set zi = v(tn,i)

3. Set yn+1 = zs+1

where the outer stage times are tn,j = tn + cjh
S and as+1,j = bj .

When ci = ci+1, the IVP “solve” reduces to a standard Runge–Kutta update.

Step 2b may use any applicable algorithm of sufficient accuracy.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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MIS Properties

MIS methods satisfy a number of desirable multirate method properties:

The MIS method is O
(
h2
)

if both inner/outer methods are at least O
(
h2
)
.

The MIS method is O
(
h3
)

if both inner/outer methods are at least
O
(
h3
)
, and TO satisfies

s∑
i=2

(ci − ci−1) (ei + ei−1)
T Ac+ (1− cs)

(
1

2
+ eTs Ac

)
=

1

3
.

The inner method may be a subcycled TO, enabling a telescopic multirate
method (i.e., n-rate problems supported via recursion).

Both inner/outer methods can utilize problem-specific tables (SSP, etc.).

hF may be varied within a slow step to adapt the multirate structure.

Highly efficient – only a single traversal of [tn, tn+1] is required. To our
knowledge, MIS are the most efficient O

(
h3
)

multirate methods available.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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MRIStep ARKode module [released Dec. 2018]

Our new MRIStep module in ARKode supports O
(
h2
)

and O
(
h3
)

MIS-like methods:

Slow scale integrated explicitly (currently exploring implicit versions).

Fast scale is advanced by calling legacy ARKode solvers – i.e., may be explicit,
implicit or IMEX.

Applied to chemically reacting flow test (cosmology prototype), and achieved
90% weak scaling parallel efficiency using over 138k CPU cores on Summit. We
are currently expanding this to perform chemistry on the GPU.

Currently applying to kinetic fusion plasma turbulence code.

Extensions to O
(
h4
)

and higher are under investigation:

Our new RMIS method [w/ Jean Sexton, LBNL] computes yn+1 as a
combination of {f(tn,i, zi)};

Our new MERK method [w/ Vu Luan (MSState) & Rujeko Chinomona
(SMU)] constructs fast IVP using exponential integrators;

etc.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
https://arxiv.org/abs/1909.12966
https://arxiv.org/abs/1909.12966
https://arxiv.org/abs/1808.03718
https://arxiv.org/abs/1904.06474
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Conclusions

Large-scale multiphysics problems:

Challenges arise due to nonlinear, interacting models.

Typically large data requirements, thus requiring scalable approximation methods.

Often, each physical process admits an “optimal” solution algorithm and time
scale, though unfortunately these approaches rarely agree.

Most “classical” methods were invented for idealized problems, and may not
work well (or at all) on “real world” applications.

My research aims to develop flexible solvers, that tune the algorithms to the problem
(instead of vice-versa), and to implement these in high-quality, open-source software
that directly impacts multiphysics applications:

Method derivation:

High-order multirate methods.
Scalable/efficient methods for exponential integrators.

Software:

Support ERK, DIRK, ARK IMEX single-rate methods; explicit+X multirate
methods.
Strive for flexibility in data structures and solver algorithms, enabling
user-supplied components that can be optimized for a given problem.

http://www.smu.edu
https://www.exascaleproject.org/
https://fastmath-scidac.org/
https://computation.llnl.gov/projects/sundials
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