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Additive Runge–Kutta (ARK) Methods [Ascher et al. 1997; Araújo et al. 1997; . . . ]

ARKode was initially designed to implement adaptive ARK methods for initial value
problems (IVPs), supporting up to two split components: explicit and implicit,

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

M is any nonsingular linear operator (mass matrix, typically M = I),

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

Combine two s-stage RK methods; denoting t∗n,j = tn + c∗jhn, hn = tn+1 − tn:

Mzi = Myn + hn

i−1∑
j=1

AE
i,jf

E(tEn,j , zj) + hn

i∑
j=1

AI
i,jf

I(tIn,j , zj), i = 1, . . . , s,

Myn+1 = Myn + hn

s∑
j=1

[
bEj fE(tEn,j , zj) + bIjf

I(tIn,j , zj)
]

(solution)

Mỹn+1 = Myn + hn

s∑
j=1

[
b̃Ej fE(tEn,j , zj) + b̃Ijf

I(tIn,j , zj)
]

(embedding)
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Solving each stage zi, i = 1, . . . , s

Each stage is implicitly defined via a root-finding problem:

0 = Gi(z)

=Mz −Myn − hn

[
AI

i,if
I(tIn,i, z) +

i−1∑
j=1

(
AE

i,jf
E(tEn,j , zj) +AI

i,jf
I(tIn,j , zj)

)]

if fI(t, y) is linear in y then we must solve a linear system for each zi,

else Gi is nonlinear, requiring an iterative solver – all generic SUNDIALS
nonlinear solvers avaialble (or user supplied).
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Reconfiguring ARKode into an infrastructure

Over the last year, we have overhauled ARKode to serve as an infrastructure
for general, adaptive, one-step time integration methods:

ARKode provides the outer time integration loop and generic usage modes
(interpolation vs “tstop”; one-step versus time interval).

Time-stepping modules handle problem-specific components: definition of
the IVP, algorithm for a single time step.

Time-stepping modules may leverage shared ARKode infrastructure:

SUNDIALS’ vector, matrix, linear solver and nonlinear solver objects,

translation between SUNDIALS’ generic matrix/solver structures

(Ax = b) and IVP-specific linear systems (A ≈M − γ ∂fI

∂y
(t, y)),

time-step adaptivity controllers: PID, PI, I, user-supplied,

. . .
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Multirate Infinitesimal Step (MIS) methods [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

MIS/RFSMR methods arose in the numerical weather prediction community. This
generic infrastructure supports O

(
h2
)

and O
(
h3
)

methods for multirate problems:

ẏ = f{f}(t, y) + f{s}(t, y), t ∈ [t0, tf ], y(t0) = y0,

f{f}(t, y) contains the “fast” terms; f{s}(t, y) contains the “slow” terms;

hs > hf , with a time scale separation hs/hf ≈ m;

y is frequently partitioned as well, e.g. y =
[
y{f} y{s}

]T
;

the slow component may be integrated using an explicit “outer” RK method,
TO = {A, b, c}, where ci ≤ ci+1, i = 1, . . . , s;

the fast component is advanced between slow stages by solving a modified ODE;

practically, this fast solution is subcycled using an “inner” RK method.
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MIS Algorithm

Denoting yn ≈ y(tn), a single MIS step yn → yn+1 has the generic form:

Set z1 = yn,

For i = 1, . . . , s :

Let tn,i = tn + cihs and v(tn,i) = zi, then for τ ∈ [tn,i, tn,i+1] solve:

v̇(τ) = f{f} (τ, v) +

i∑
j=1

αi+1,jf
{s} (tn,j , zj) ,

Set zi+1 = v(tn,i+1)

Set yn+1 = zs+1,

where the coefficients αi,j are defined appropriately.

The IVP for v(τ) may be solved using any applicable algorithm.
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MIS Properties

MIS methods satisfy a number of desirable multirate method properties:

The MIS method is O
(
h2
)

if both inner/outer methods are at least O
(
h2
)
.

The MIS method is O
(
h3
)

if both inner/outer methods are at least
O
(
h3
)
, and TO satisfies

s∑
i=2

(ci − ci−1) (ei + ei−1)
T Ac+ (1− cs)

(
1

2
+ eTs Ac

)
=

1

3
.

The inner method may be a subcycled TO, enabling a telescopic multirate
method (i.e., n-rate problems supported via recursion).

Both inner/outer methods can utilize problem-specific table (SSP, etc.).

Highly efficient – only a single traversal of [tn, tn + h] is required. To our
knowledge, MIS are the most efficient O

(
h3
)

multirate methods available.
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MRIStep ARKode stepper

David Gardner has implemented a new MRIStep module to support O
(
h2
)

and
O
(
h3
)

MIS-like methods [released Dec. 2018].

Currently requires user-defined hs and hf (may be varied between outer
steps). We are currently expanding this to support temporal adaptivity.

Slow time scale is integrated with an ERK method. We are currently
exploring methods with an implicit slow component.

Fast scale is advanced by calling the ARKStep module. Current release
requires ERK fast scale, but implicit and ImEx will be released soon.

Extensions to O
(
h4
)

and higher are under investigation:

J.M. Sexton’s RMIS computes yn+1 as a combination of {f(tn,i, zi)};
V.T. Luan’s MERK constructs fast IVP using exponential integrators;

A. Sandu’s MRI-GARK modifies the fast IVP:

v̇(τ) = f{f} (τ, v) +

i+1∑
j=1

γi,j

(
τ − tn,i

hs

)
f{s} (tn,j , zj) .
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Conclusions

The ARKode infrastructure flexibly supports extensive studies of optimal
algorithms for multiphysics problems:

Numerous built-in ERK, DIRK, and ARK methods; supports user-supplied.

Numerous vector/matrix data structures, support for user-supplied and
data partitioned.

Numerous algebraic solver algorithms, support for user-supplied.

Actively developing state-of-the-art flexible time integration methods for
multi-physics applications:

Additive partitioning – break apart physical processes based on
stiffness (implicit/explicit/IMEX) or time scale (fast/slow).

Variable partitioning – break apart solution based on time scales
(fast/slow) or solvers (algebraic, computing hardware).

Focus on ease-of-use and support for user-supplied components, so
that critical methods can be highly optimized for a given problem.
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