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Multiphysics Problems

“Multiphysics” problems typically involve a variety of interacting processes:

System of components coupled in the bulk [cosmology, combustion]

System of components coupled across interfaces [climate, tokamak fusion]

Multiphysics simulation challenges include:

Multirate processes, but too close to analytically reformulate.

Optimal solvers may exist for some pieces, but not for the whole.

Mixing of stiff/nonstiff processes, a challenge for standard algorithms.

Historical approaches rely on lowest-order time step splittings, may suffer from:

Low accuracy – typically O(h)-accurate; symmetrization/extrapolation
may improve this but at significant cost [Ropp, Shadid & Ober 2005].

Poor/unknown stability – even when each part utilizes a ’stable’ step size,
the combined problem may admit unstable modes [Estep et al., 2007].
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Need for Flexible Time Integration Libraries

Multiphysics time integration needs:

Stability/accuracy for each component, as well as inter-physics couplings

Custom/flexible step sizes for distinct components

Robust temporal error estimation & adaptivity of step size(s)

Built-in support for spatial adaptivity

Ability to apply optimal solver algorithms for individual components

Support for testing a variety of methods and solution algorithms

Legacy software frameworks enforce overly-rigid standards on applications:

Fully implicit or fully explicit, without IMEX flexibility.

Inflexible data structures for vectors, matrices, (non)linear solvers.

Hard-coded parameters – good for most problems, but rarely optimal.
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SUNDIALS: SUite of Nonlinear and DIfferential-ALgebraic equation Solvers

Software library of ODE and DAE time integrators and nonlinear solvers

Consists of six packages: CVODE(S), ARKode, IDA(S), and KINSOL

Written in C with interfaces to Fortran

Designed to be easily incorporated into existing codes

Modular implementation

Data use is fully encapsulated by vector and matrix APIs

Nonlinear and linear solvers are fully encapsulated from the integrators

All parallelism is encapsulated in vectors, solvers, and user-supplied functions

Vector, matrix, and solver modules can all be user-supplied

Availability and support

Freely available; BSD 3-Clause license; > 25, 000 downloads in 2018

Detailed user manuals and an active user community email list

More information: https://computing.llnl.gov/casc/sundials

11:30 Friday: talk by Carol Woodward (MS GH-3-5-9)

Monday/Tuesday: poster by David Gardner (PA-041)
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Additive Runge–Kutta (ARK) Methods [Ascher et al. 1997; Araújo et al. 1997; . . . ]

ARKode was initially designed to implement adaptive ARK methods for initial value
problems (IVPs), supporting up to two split components: explicit and implicit,

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0,

M is any nonsingular linear operator (mass matrix, typically M = I),

fE(t, y) contains the explicit terms,

fI(t, y) contains the implicit terms.

Combine two s-stage RK methods; denoting t∗n,j = tn + c∗jhn, hn = tn+1 − tn:

Mzi =Myn + hn

i−1∑
j=1

AE
i,jf

E(tEn,j , zj) + hn

i∑
j=1

AI
i,jf

I(tIn,j , zj), i = 1, . . . , s,

Myn+1 =Myn + hn

s∑
j=1

[
bEj f

E(tEn,j , zj) + bIjf
I(tIn,j , zj)

]
(solution)

Mỹn+1 =Myn + hn

s∑
j=1

[
b̃Ej f

E(tEn,j , zj) + b̃Ijf
I(tIn,j , zj)

]
(embedding)
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ARKode Flexibility Enhancements

ARKode includes several enhancements for multiphysics codes, including:

Variety of built-in Butcher tables (ERK, DIRK, IMEX ARK); supports
user-supplied.

Variety of built-in temporal adaptivity functions; supports user-supplied.

Variety of built-in implicit predictor algorithms.

Ability to specify that problem is linearly implicit.

Ability to resize data structures based on changing IVP size.

All internal solver parameters are user-modifiable.
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Examples of ARKode Usage

ARKode has been freely-available since 2014. We have specifically worked with
applications groups in:

ParaDiS – large-scale simulations of dislocation
growth/propagation (material strain hardening)

Examined high-order adaptive DIRK methods.

Examined nonlinear solvers and options.

51%-98% speedup (production/test problems)

Tempest & HOMME-NH – non-hydrostatic 3D
dynamical cores for atmospheric simulations

Examined IMEX splittings & fixed-step ARK
methods for accuracy/stability

Examined nonlinear/linear solver algorithms
for implicit components

Identified ‘optimal’ splitting+solver+ARK;
invented new climate-specific ARK methods.

Implicit integration methods for dislocation dynamics 21

Table 3. Run time (seconds) and number of time steps for 3rd through 5th order

DIRK integrators on the Frank-Read source problem using the Newton-Krylov (NK)

solver to a final time of 50 µs. Recall ✏n is the nonlinear solver convergence tolerance

from (17) and ✏l is the linear solver tolerance factor in the inexact Newton iteration.

The native ParaDiS solver took 1120s and required 6,284 time steps for the same

problem. The DIRK solvers with ✏n = 1.0 and 4 iterations took as little as 1/44 as

many steps. Several methods achieved a speedup of 95% over the native ParaDiS

solver.

✏n = 0.1 ✏n = 0.5 ✏n = 1.0

Method Run time Steps Run time Steps Run time Steps

DIRK3 NK I2 ✏l0.1 174 576 620 1636 178 535

DIRK3 NK I3 ✏l0.1 1396 2995 664 1676 64 208

DIRK3 NK I4 ✏l0.1 84 235 68 216 62 202

DIRK3 NK I2 ✏l0.5 670 1832 104 368 432 1289

DIRK3 NK I3 ✏l0.5 77 240 613 1788 608 1739

DIRK3 NK I4 ✏l0.5 78 242 60 188 89 270

DIRK4 NK I2 ✏l0.1 174 478 108 305 81 229

DIRK4 NK I3 ✏l0.1 96 237 80 195 72 176

DIRK4 NK I4 ✏l0.1 84 203 71 117 67 175

DIRK4 NK I2 ✏l0.5 144 421 106 308 436 1060

DIRK4 NK I3 ✏l0.5 87 231 71 187 127 227

DIRK4 NK I4 ✏l0.5 86 213 87 202 53 140

DIRK5 NK I2 ✏l0.1 202 540 136 351 113 294

DIRK5 NK I3 ✏l0.1 286 620 114 253 70 170

DIRK5 NK I4 ✏l0.1 99 215 90 213 74 161

DIRK5 NK I2 ✏l0.5 222 571 139 369 86 250

DIRK5 NK I3 ✏l0.5 1001 1868 384 575 77 185

DIRK5 NK I4 ✏l0.5 88 212 366 665 70 169

(a) Initial system state (b) System state after 3.3 µs

Figure 3. (a) The initial condition for the cold start simulations containing ⇠450

nodes forming straight line dislocations. (b) The final system state after 3.3 µs with

⇠2850 nodes.

Implicit integration methods for dislocation dynamics 26

Figure 5. Dislocation density for the cold start problem using the trapezoid

method with two nonlinear iterations, trapezoid using Anderson acceleration with four

iterations and three residual vectors, and the 3rd and 5th order DIRK integrators with

Anderson acceleration with four nonlinear iterations and three residual vectors with

nonlinear tolerance factor ✏n 1.0. The di↵erent methods show good agreement in the

density curves throughout the duration of the simulation.

(a) System state after 4.4 µs (b) System state after 6.25 µs

Figure 6. (a) The final dislocation network for the warm start test after 1.1 µs for

a final simulation time of 4.4 µs containing ⇠2920 nodes. (b) The final warm start

system state after 2.95 µs for a final time of 6.25 µs with ⇠4950 nodes.

Gardner et al., MSMSE, 2015
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Reconfiguring ARKode into an infrastructure

Over the last 18 months, we have overhauled ARKode to serve as an
infrastructure for general, adaptive, one-step time integration methods:

ARKode provides the outer time integration loop and generic usage modes
(interpolation vs “tstop”; one-step versus time interval).

Time-stepping modules handle problem-specific components: definition of
the IVP, algorithm for a single time step.

Time-stepping modules may leverage shared ARKode infrastructure:

SUNDIALS’ vector, matrix, linear solver and nonlinear solver objects,

translation between generic solvers and IVP-specific algebraic systems,

time-step adaptivity controllers: PID, PI, I, user-supplied,

. . .

Increased agility for implementing state-of-the-art algorithms in a production
software environment.
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ARKode Time-Stepping Modules

The new ARKode structure based on time-stepping modules eases the
implementation of new integration schemes:

ARKStep Provides all the functionality from previous ARKode versions.
Supports ARK, DIRK and ERK methods for problems of the form

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0.

ERKStep: A streamlined module that provides more optimal support for
ERK-specific methods applied to the standard IVP form

ẏ = f(t, y), t ∈ [t0, tf ], y(t0) = y0.

MRIStep: Provides support for Multirate Infinitesimal Step (MIS) like
methods

ẏ = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

IMEXGARKStep: Provides support for IMEX Generalized Runge-Kutta
methods (currently testing)

Mẏ = fE(t, y) + fI(t, y), t ∈ [t0, tf ], y(t0) = y0.

http://www.smu.edu
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Multirate Infinitesimal Step (MIS) methods [Knoth & Wolke 1998; Schlegel et al. 2009; . . . ]

MIS methods arose in the numerical weather prediction community. This generic
infrastructure supports O

(
h2
)

and O
(
h3
)

methods for multirate problems:

ẏ = fS(t, y) + fF (t, y), t ∈ [t0, tf ], y(t0) = y0.

fF (t, y) contains the “fast” terms; fS(t, y) contains the “slow” terms.

hS > hF , with a time scale separation hS/hF ≈ m.

y is frequently partitioned as well, e.g. y =
[
yF yS

]T
.

The slow component may be integrated using an explicit “outer” RK method,
TO = {A, b, c}, where ci ≤ ci+1, i = 1, . . . , s− 1.

The fast component is advanced between slow stages as the exact solution of a
modified ODE.

Practically, this fast solution is subcycled using an “inner” RK method.

http://www.smu.edu
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MIS Algorithm

Denoting yn ≈ y(tn), a single MIS step yn → yn+1 is as follows:

1. Set z1 = yn

2. For each outer Runge-Kutta stage zi, i = 2, . . . , s+ 1:

a) Let v(tn,i−1) = zi−1 and r =
i−1∑
j=1

(
Ai,j −Ai−1,j

ci − ci−1

)
fS (tn,j , zj)

b) Solve the fast ODE: v̇(τ) = fF (τ, v) + r, for τ ∈ [tn,i−1, tn,i]

c) Set zi = v(tn,i)

3. Set yn+1 = zs+1

where the outer stage times are tn,j = tn + cjh
S and As+1,j = bj .

When ci = ci+1, the IVP “solve” reduces to a standard Runge–Kutta update.

Step 2b may use any applicable algorithm of sufficient accuracy.

http://www.smu.edu
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MIS Properties

MIS methods satisfy a number of desirable multirate method properties:

The MIS method is O
(
h2
)

if both inner/outer methods are at least O
(
h2
)
.

The MIS method is O
(
h3
)

if both inner/outer methods are at least
O
(
h3
)
, and TO satisfies

s∑
i=2

(ci − ci−1) (ei + ei−1)
T Ac+ (1− cs)

(
1

2
+ eTs Ac

)
=

1

3
.

The inner method may be a subcycled TO, enabling a telescopic multirate
method (i.e., n-rate problems supported via recursion).

Both inner/outer methods can utilize problem-specific tables (SSP, etc.).

hF may be varied within a slow step to adapt the multirate structure.

Highly efficient – only a single traversal of [tn, tn+1] is required. To our
knowledge, MIS are the most efficient O

(
h3
)

multirate methods available.
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MRIStep Module

The new MRIStep module supports O
(
h2
)

and O
(
h3
)

MIS-like methods.

The slow time scale is integrated with an explicit Runge–Kutta method.

The slow time scale uses a user-defined hS that can be varied between
slow steps.

The fast time scale is advanced by calling the ARKStep module, and thus
allows for explicit, implicit or IMEX integration.

The fast time scale can use adaptive or fixed time step sizes.

Supports user-defined Butcher tables for both time scales.

Explicit-explicit released in SUNDIALS v4.0, implicit and IMEX fast are
available in SUNDIALS v5.0 beta releases.

Currently implementing extensions to O
(
h4
)

and implicit slow integration.

http://www.smu.edu
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MRIStep Example – Advection-Reaction

Explicit (slow) advection and implicit (fast) Brusselator reactions:

ut = −cux + k1A− k2Bu+ k3u
2v − k4u

vt = −cvx + k2Bu− k3u2v

Comparison of O
(
h3
)

MIS vs IMEX (time steps chosen for comparable accuracy):

IMEX MRI

Time steps 6,805 1,429 / 8,813

Advection evals 29,379 4,288

Reaction evals 98,917 116,949

MIS requires fewer advection evaluations, lowering MPI communication costs.

MRIStep benefits depend on an array of factors:

separation of time scales (e.g., CFL vs reaction rates)

relative cost of fS vs fF function evaluations

http://www.smu.edu
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MRIStep Example in AMReX (from J. Loffeld @ LLNL)

We have integrated SUNDIALS with AMReX, providing a powerful new set of tools
for solving multiscale problems posed on block-structured AMR grids.

NVector API enables SUNDIALS to use native AMReX structures for single-level
and multi-level problems.

SUNLinearSolver API enables SUNDIALS to use AMReX MLABecLaplacian
solver for scalable diffusion solves in implicit methods.

3D Brusselator (two-level AMR grid with 2:1 refinement ratio):

Explicit-explicit MRIStep with hS/hF = 100.

MRIStep effectively removes advection cost for similar accuracy requirements.

At core-counts tested, advection costs 66% more than reactions (will increase at
larger scales)

2D slice of 3D
Brusselator
solution

Results from LLNL’s Quartz cluster:

Cores Fine Grid Time (s)

64 2563 335

512 5123 342

4096 10243 368

http://www.smu.edu
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Extensions to Higher Order and Implicit Slow

We are currently exploring extensions for O
(
h4
)

methods in MRIStep:

MRI-GARK methods [Sandu, 2018] modify the MIS slow forcing term in the fast
IVP to have time-dependent coefficients:

r(τ) =

i−1∑
j=1

γi,j

(
τ − tn,i−1

(ci − ci−1)hS

)
fS (tn,j , zj) .

MRI-GARK also include decoupled implicit methods that do not require solving a
fully coupled fast and slow system – these can readily leverage the existing
ARKStep solver infrastructure.

Relaxed MIS methods (RMIS) [Sexton & R., 2018] compute yn+1 as a
combination of {fF (tn,i, zi) + fS(tn,i, zi)} to produce a O

(
h4
)

method with

O
(
h3
)

MIS embedding.

Multirate exponential Runge–Kutta methods (MERK) [Luan, Chinomona & R.,
2019] are similar to MRI-GARK, constructing time-dependent fast IVP forcing
terms r(τ), but rely on exponential integrator theory (as opposed to GARK).

http://www.smu.edu
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Conclusions

The ARKode infrastructure flexibly supports extensive studies of optimal
algorithms for multiphysics problems:

Numerous built-in methods; supports user-supplied.

Numerous vector/matrix data structures, support for user-supplied.

Numerous algebraic solver algorithms, support for user-supplied.

Actively developing state-of-the-art flexible time integration methods for
multiphysics applications:

Additive partitioning – break apart physical processes based on
stiffness (implicit/explicit/IMEX) or time scale (fast/slow).

New support for explicit slow MIS methods with explicit, implicit or
IMEX fast integration, with higher order and implicit slow coming.

Focus on ease-of-use and support for user-supplied components,
allowing SUNDIALS to reuse previous development of optimal data
structures and algebraic solvers.

http://www.smu.edu
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United States government. Neither the United States government nor Lawrence
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expressed or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States government or

Lawrence Livermore National Security, LLC. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the United States

government or Lawrence Livermore National Security, LLC, and shall not be used for

advertising or product endorsement purposes.
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