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§ Overview of SUNDIALS (Carol Woodward)

§ How to use the time integrators (Daniel Reynolds)

§ Which nonlinear and linear solvers are available and how to use them (David Gardner)

§ Using SUNDIALS on (Pre) Exascale Machines (Cody Balos)

§ Brief: How to download and install SUNDIALS (Cody Balos)

Tutorial Outline
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§ SUNDIALS is a software library consisting of ODE and DAE integrators and nonlinear solvers
— 6 packages: CVODE(S), IDA(S), ARKode, and KINSOL

§ Written in C with interfaces to Fortran (77 and 2003)
§ Designed to be incorporated into existing codes
§ Nonlinear and linear solvers and all data use is fully encapsulated from the integrators and can be user-

supplied
§ All parallelism is encapsulated in vector & solver modules and user-supplied functions
§ Through the ECP, developing a rich infrastructure of support on exascale systems and applications
§ Freely available; released under the BSD 3-Clause license ( >27,000 downloads in 2019)
§ Active user community supported by sundials-users email list
§ Detailed user manuals are included with each package

SUite of Nonlinear and DIfferential-ALgebraic Solvers

https://computing.llnl.gov/casc/sundials
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§ CVODE solves ODEs  (�̇� = f(t, y))
§ IDA  solves DAEs 𝐹(𝑡, 𝑦, �̇�) = 0

— Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 DAEs
— Optional routine solves for consistent values of y0 and ̇𝑦0 for some cases

§ Variable order and variable step size Linear Multistep Methods

§ Both packages include stiff BDF methods up to 5th order (K1 = 1,…,5 and K2 = 0)
§ CVODE includes nonstiff Adams-Moulton methods up to 12th order (K1 = 1, K2 = 1,…,12)
§ Both packages include rootfinding for detecting sign change in solution-dependent functions
§ CVODES and IDAS include both forward and adjoint (user supplies the adjoint operator) 

sensitivity analysis

CVODE(S) and IDA(S) employ variable order and step BDF 
methods for integration 
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ARKode is the newest package in SUNDIALS

§ ARKode solves ODEs
— M may be the identity or any nonsingular mass matrix (e.g., FEM)

§ Multistage embedded methods (as opposed to multistep):
— High order without solution history (enables spatial adaptivity)
— Sharp estimates of solution error even for stiff problems
— Implicit and additive multistage methods require multiple implicit solves per step

§ Supplied with three steppers now (but easy to add others)
— ERKStep: explicit Runge-Kutta methods for 

— ARKStep: explicit, implicit, or IMEX methods for 
• Split system into stiff, fI, and nonstiff, fE, components

— MRIStep: two-rate multirate methods for   
• Split the system into fast and slow components
• More methods to come very soon

Equations for Slides

David Gardner

August 2017
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ẏ = ff (t, y) + fs(t, y), y(t0) = y0 (12)

3.2 Nonlinear System

F (zi) ⌘ Mzi � hnA
I
i,ifI(t

I
n,i, zi)� ai = 0 (13)

G(zi) ⌘ hnA
I
i,ifI(t

I
n,i, zi) + ai = zi (14)

4 IDA
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F (t, y,
dy

dt
) = 0, y(t0) = y0,

dy

dt
(t0) = y

0
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@F/@y (17)

F (t, y, y0) = 0, y(t0) = y0, y
0(t0) = y

0
0 (18)

4.2 Nonlinear System

F (tn, y
n
, h

�1
n

qX

i=0

↵n,iy
n�i) = 0 (19)

5 IDAS
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6 KINSOL

F (u) = 0 (21)

G(u) = u (22)
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ẏ = ff (t, y) + fs(t, y), y(t0) = y0 (12)

3.2 Nonlinear System

F (zi) ⌘ Mzi � hnA
I
i,ifI(t

I
n,i, zi)� ai = 0 (13)

G(zi) ⌘ hnA
I
i,ifI(t

I
n,i, zi) + ai = zi (14)

4 IDA

4.1 Initial Value Problem

F (t, y,
dy

dt
) = 0, y(t0) = y0,

dy

dt
(t0) = y

0
0 (15)
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Time steps are chosen to minimize local truncation error and 
maximize efficiency

§ Time step selection
— Based on the method, estimate the time step error
— Accept step if ||E(Dt)||WRMS < 1; Reject it otherwise

— Choose next step, Dt’, so that ||E(Dt’)|| WRMS < 1
§ CVODE and IDA also adapt order

— Choose next order resulting in largest step meeting error condition

§ Relative tolerance (RTOL) controls local error relative to the size of the solution
— RTOL = 10-4 means that errors are controlled to 0.01%

§ Absolute tolerances (ATOL) control error when a solution component may be small 
— Ex: solution starting at a nonzero value but decaying to noise level, ATOL should be set to noise level
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9 Newton
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KINSOL solves systems of nonlinear algebraic equations, F(u) = 0

§ Newton solvers: update iterate via 

— Compute the update by solving:

— An inexact Newton method approximately solves this equation

§ Dynamic linear tolerance selection for use with iterative linear solvers

§ Can separately scale equations and unknowns

§ Backtracking and line search options for robustness

§ Fixed point and Picard iterations with optional Anderson acceleration are also available

9 Newton

y
(m+1) = y

(m) + �
(m+1) (36)

A(y(m))�(m+1) = �F (y(m)) (37)

J(y(m))�(m+1) = �F (y(m)) (38)

Ax = b (39)

J ⌘ @F/@y (40)

A ⌘ @F

@y
(41)

kF (y(m)) + J(y(m))�(m)k  ⌘
(m)kF (y(m))k (42)

kF (uk) + J(uk)skk  ⌘
kkF (uk)k (43)

y
(m+1) = G(y(m)) (44)

6
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§ SUNDIALS integrators are built on 
shared vector, matrix, and solver 
APIs

§ These APIs encapsulate the 
solution data and parallelism

§ Several optional vector, matrix, and 
solver modules implementing the 
APIs are provided with SUNDIALS 
e.g.,

— MPI vectors and solvers

— GPU vectors and solvers

§ It is straightforward to implement a 
problem-specific module tailored to 
the application

Time integrator and nonlinear solver 
are agnostic of vector data layout 

and specific solvers used

Control passes from the integrator to 
the solvers and application code as 

the integration progresses

SUNDIALS uses modular design and control inversion to interface with 
application codes, external solvers, and encapsulate parallelism

Application Code
Finite Element 

Tools:
Function and 

Jacobian evaluationLinear solver

Time integrator

Nonlinear solver

dy

y

f, J

Updated residual f  
and Jacobian J 

Updated solution y

Preconditioner P
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§ High-order multirate methods that can integrate different portions of the problem with different 
time steps - current release includes 2nd and 3rd order two-rate methods that allow for explicit 
for the slow and explicit, implicit, and IMEX for the fast integrator

§ New vector modules: Many-vector capability and MPI+X vectors

§ Interface to PETSc nonlinear solvers (SNES API)

§ Interface to SuperLU_DIST sparse direct linear solver

§ Fortran 2003 interfaces (modernized from original F77 interface)

§ Greater support for use in CUDA environments
— Enhancements to the CUDA vector
— Interface to the NVIDIA CuSparse batched QR sparse linear solver

What’s new in SUNDIALS?
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Results with SUNDIALS’ multirate integrators are very encouraging

§ Demonstrated scalability on primordial gas chemically 
reacting flow test with compressible hydrodynamics 
and stiff chemical reactions (10 chem. species):

𝑤% = −∇ ⋅ 𝐹 𝑤 + 𝑅 𝑤 + 𝐺(𝑤, 𝑡)

— w: density, momenta in each direction, total 
energy, and chemical densities (10)

— F: advective fluxes; R reaction terms; and G: 
external forces

§ Tested with:
— 3rd order 2-rate method with slow explicit advection 

and fast implicit rxns (Factor ~1000 in step size)
— 3rd order IMEX method using fast step

Normalized run times show ~10x speed ups for 
multirate methods using third order implicit for fast 
chemical reactions and third order explicit for slow 
fluid flow over similar third order IMEX method 
running at the single rate of the fast time scale.

Multirate allows the explicit RHS evaluation (which requires MPI exchanges) to run at a far 
reduced time step than what is required for the single rate IMEX method to maintain stability.
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§ Enhanced support for solving several ODE systems simultaneously on GPUs (useful for 
combustion applications)
— New Get routines to allow for better diagnosis of “hard” systems for load balancing
— Fusing more vector kernels for efficiency
— Support for loading sparse matrices from a GPU
— HIP vector and solvers as they become available

§ Addition of capability to integrate a system with CVODE while projecting the solution onto a 
constraint manifold

§ Capability to integrate with time-dependent mass matrices in ARKode

§ Increased interoperability with other solver libraries 

§ More multirate methods, including implicit / explicit schemes

What are we working on now?

SuperLU_DIST
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SUNDIALS: Used Worldwide in Applications from Research & Industry
§ Computational Cosmology (Nyx)
§ Combustion (PELE)
§ Atmospheric dynamics (DOE E3SM)
§ Fluid Dynamics (NEK5000) (ANL)
§ Dislocation dynamics (LLNL)
§ 3D parallel fusion (SMU, U. York, LLNL)
§ Power grid modeling (RTE France, ISU, LLNL)
§ Sensitivity analysis of chemically reacting flows (Sandia)
§ Large-scale subsurface flows (CO Mines, LLNL)
§ Micromagnetic simulations (U. Southampton)
§ Chemical kinetics (Cantera)
§ Released in third party packages:

§ Red Hat Extra Packages for Enterprise Linux (EPEL)
§ SciPy – python wrap of SUNDIALS
§ Cray Third Party Software Library (TPSL)

Core collapse 
supernova

Dislocation dynamics Subsurface flow

Cosmology

Atmospheric Dynamics
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SUNDIALS Team
Current Team:

Alumni:

Cody Balos David Gardner Alan Hindmarsh Dan Reynolds Carol Woodward

Radu Serban

Scott D. Cohen, Peter N. Brown, George Byrne, Allan G. Taylor, Steven L. Lee, 
Keith E. Grant, Aaron Collier, Lawrence E. Banks, Steve G. Smith, Cosmin Petra, 
Slaven Peles, John Loffeld, Dan Shumaker, Ulrike M. Yang, James Almgren-Bell, 
Shelby L. Lockhart, Hilari C. Tiedeman, Ting Yan, Jean M. Sexton, and Chris White
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§ Overview of SUNDIALS (Carol Woodward)

§ How to use the time integrators (Daniel Reynolds)

§ Which nonlinear and linear solvers are available and how to use them (David Gardner)

§ Using SUNDIALS on (Pre) Exascale Machines (Cody Balos)

§ Brief: How to download and install SUNDIALS (Cody Balos)

Tutorial Outline
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This tutorial section covers basic usage of the SUNDIALS time integration packages (CVODE, 
IDA, ARKODE):

§ Problem specification

§ Integrator creation/initialization

§ Advancing the solutions

§ Retrieving optional outputs

§ Advanced features

Time Integrators
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§ SUNDIALS’ integrators consider initial-value problems of a variety of types:
— Standard IVP [CVODE]: 
— Linearly-implicit, split [ARKode]:
— Multirate [ARKode/MRIStep]: 
— Differential-algebraic form [IDA]: 

§ By “solve” we adapt time steps to meet user-specified tolerances:

—                   is the estimated temporal error in the time step
—             is the previous time-step solution
—               encodes the desired relative solution accuracy (number of significant digits)
—                 is the ‘noise’ level for any solution component (protects against            )

“Solving” Initial-Value Problems with SUNDIALS

error 2 RN

rtol 2 R
atol 2 RN yk = 0

y 2 RN

"
1

N

NX

k=1

✓
errork

rtol |yk|+ atolk

◆2
#1/2

< 1

ẏ(t) = f(t, y(t)), y(t0) = y0

F (t, y(t), ẏ(t)) = 0, y(t0) = y0, ẏ(t0) = ẏ0

M ẏ(t) = f1(t, y(t)) + f2(t, y(t)), y(t0) = y0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ẏ = fF (t, y) + fS(t, y), y(t0) = y0
<latexit sha1_base64="DdjKIFp8cCmvS728LSXzlNmLoD8=">AAACG3icbZDLSgMxFIYz9VbrrerSTbAILZYyUwu6EQqCuKxoL9DWIZNm2tDMxeSMMAx9Dze+ihsXirgSXPg2ppeFtv4Q+PjPOZyc3wkFV2Ca30ZqaXlldS29ntnY3Nreye7uNVQQScrqNBCBbDlEMcF9VgcOgrVCyYjnCNZ0hhfjevOBScUD/xbikHU90ve5yykBbdnZcqcXQBKP8Dl27y7zUIwL+FjjzQSLuHMfkR6O82CbBd0T22bGzubMkjkRXgRrBjk0U83OfuolNPKYD1QQpdqWGUI3IRI4FWyU6USKhYQOSZ+1NfrEY6qbTG4b4SPt9LAbSP18wBP390RCPKViz9GdHoGBmq+Nzf9q7Qjcs27C/TAC5tPpIjcSGAI8Dgr3uGQURKyBUMn1XzEdEEko6DjHIVjzJy9Co1yyTkrl60quWpnFkUYH6BDlkYVOURVdoRqqI4oe0TN6RW/Gk/FivBsf09aUMZvZR39kfP0AoMqdVQ==</latexit>
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values,              ; if using IDA, also create

3. Create and initialize integrator object (attaches                 , RHS/residual function(s))

4. Create matrix, linear solver, nonlinear solver objects (if applicable); attach to integrator
— Defaults exist for some of these, but may be replaced with problem-specific versions
— Parallel scalability hinges on appropriate choices (discussed in next section of tutorial)

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals        , or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators

y0 2 RN ẏ0 2 RN

[a, b]

t0, y0, (ẏ0)
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SUNDIALS still supports legacy Fortran77 interfaces for most packages, but in the last year we 
have released fully-featured Fortran 2003 interfaces for nearly the entire suite:

§ Leverage the iso_c_binding module and the bind(C) attribute from the F2003 standard.

§ SUNDIALS’ F2003 interfaces closely follow the C/C++ API

§ Generic SUNDIALS structures, e.g. , N_Vector, are interfaced as Fortran derived types, and 
function signatures are matched but with an F prepending the name, e.g. FN_VConst instead 
of N_VConst. 

§ Constants are named exactly as they are in the C/C++ API.

§ Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C/C++.

The remainder of this tutorial will therefore focus on C/C++; please reserve questions regarding 
the F77 or F2003 interfaces for one-on-one discussions.

C/C++ vs Fortran
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§ As discussed earlier, all SUNDIALS integrators operate on data through the NVector API.

§ Each provided vector module has a unique set of “constructors”, e.g.

    N_Vector N_VNew_Serial(sunindextype length);    

    N_Vector N_VNew_Parallel(MPI_Comm comm, sunindextype loc_len, sunindextype glob_len);

    N_Vector N_VMake_Cuda(sunindextype length, realtype *h_vdata, realtype *d_vdata);

    N_Vector N_VMake_MPIManyVector(MPI_Comm comm, sunindextype n_subvec, N_Vector *varr);

    N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector x);

§ Once an application creates a vector for their data, they fill it with the initial conditions for the 
problem and supply it to the integrator, who “clones” it to create its workspace.

§ For PETSc, hypre, and Trilinos, the corresponding SUNDIALS NVector wrapper constructors 
take the native vector structure as their only input.

Supplying the Initial Condition Vector(s)
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Once the problem data is encapsulated in a vector, all that remains for basic SUNDIALS usage is 
specification of the IVP itself:

§ CVODE and ARKODE specify the IVP through right-hand side function(s):

 int (*RhsFn)(realtype t, N_Vector y, N_Vector ydot, void *user_data)

§ IDA specifies the IVP through a residual function:

 int (*ResFn)(realtype t, N_Vector y, N_Vector ydot, N_Vector r, 
                    void *user_data)

§ The *user_data  pointer enables problem-specific data to be passed through the SUNDIALS 
integrator and back to the RHS/residual routine (i.e., no global memory).

Supplying the IVP to the Integrator – RHS/Residual Functions
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CVODE/ARKODE RHS Functions

Example: 
cvDisc_dns.c
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IDA Residual Function

Example:
idaFoodWeb_kry_p.c
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When solving an IVP with non-identity mass matrix, users must supply either a routine to 
construct a mass matrix                    : 

     int (*ARKLsMassFn)(realtype t, SUNMatrix M, void *user_data, 
                        N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);

or to perform the mass-matrix-vector product,                           :

     int (*ARKLsMassTimesSetupFn)(realtype t, void *mtimes_data);

     int (*ARKLsMassTimesVecFn)(N_Vector v, N_Vector Mv, realtype t, 
                                void *mtimes_data);

Supplying the IVP to ARKODE – Mass Matrix Functions

M 2 RN⇥N

Mv : RN ! RN
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The IVP inputs are supplied when constructing the integrator.

Initializing the Integrators – CVODE and IDA

CVODE

IDA
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Initializing the Integrators – ARKODE 

IMEX (top), implicit (middle), explicit (bottom) Multirate with IMEX at fast time scale
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A variety of optional inputs enable enhanced control over the integration process.  Here we 
discuss the most often-utilized options (see documentation for the full set).

§ Tolerance specification – rtol with scalar or vector-valued atol, or user-specified routine to 
compute the error weight vector

§ SetNonlinearSolver, SetLinearSolver – attaches desired nonlinear solver, linear solver 
and (optionally) matrix modules to the integrator.

§ SetUserData – specifies the (void *user_data) pointer that is supplied to user routines.

§ SetMaxNumSteps, SetMaxStep, SetMinStep, SetInitStep – provides guidance to time 
step adaptivity algorithms.

§ SetStopTime – specifies the value of tstop to use when advancing solution (this is retained 
until this stop time is reached or modified through a subsequent call).

Optional Inputs (all Integrators)

wk ⇡ 1

rtol |yk|+ atolk
> 0, k = 1, . . . , N
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§ SetMaxOrd – specifies the maximum order of accuracy for the method (the order is adapted 
internally, along with the step size).

§ CalcIC (IDA-specific) – in certain cases will help find a consistent     .

— A variety of additional routines may be used for additional control over this algorithm.

§ SetId (IDA-specific) – specifies which variables are differential vs algebraic (useful when 
calling CalcIC above).

Package-Specific Options (CVODE and IDA)

ẏ0
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§ SetFixedStep – disables time step adaptivity (and temporal error estimation/control).

§ SetLinear –  f1(t,y(t)) depends linearly on y (disables nonlinear iteration).

§ SetOrder – specifies the order of accuracy for the method.

§ SetTables – allows user-specified ERK, DIRK or ARK Butcher tables.

§ SetAdaptivityFn – allows user-provided routine for time step selection.

§ MRIStep allows fast and slow time scales to be controlled independently, e.g., both using fixed 
step sizes, fast using temporal adaptivity, …

Package-Specific Options (ARKODE)
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After constructing the integrator, additional options may be supplied through various “Set” 
routines (example from ark_heat1D_adapt.c):

Supplying Options to the Integrators
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Users may construct custom Butcher tables and supply these to the integrator:

   Constructor:

   ARKodeButcherTable ARKodeButcherTable_Create(int s, int q, int p,
                  realtype *c, realtype *A, realtype *b, realtype *b2); 

   Specification:

   int ARKStepSetTables(void *arkode_mem, int q, int p,
                        ARKodeButcherTable Bi, 
                        ARKodeButcherTable Be);

   (either Bi or Be may be NULL to specify use of an ERK or DIRK method, respectively)

Supplying Custom Butcher tables to ARKODE
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While     is supplied at initialization, the direction of integration is specified on the first call to 
advance the solution toward the output time       .  This may occur in one of four “usage modes”:

§ “Normal” – take internal steps until        is overtaken in the direction of integration, e.g. for 
forward integration                           ;  the solution            is then computed by interpolation.

§ “One-step” – take a single internal step                    and then return control back to the calling 
program. If this step will overtake        then             is interpolated; otherwise      is returned.

§ “Normal + TStop” – take internal steps until the next step will overtake         ; limit the next 
internal step so that                .  No interpolation is performed.

§ “One-step + TStop” – performs a combination of both “One-step” and “TStop” modes above.

Usage Modes for SUNDIALS Integrators

t0
tout

tout
tn�1 < tout  tn y(tout)

yn�1 ! yn
tout y(tout) yn

tstop
tn = tstop
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Once all options have been set, the integrator is called to advance the solution toward tout.

Advancing the Solution

CVODE

IDA

ARKODE
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Either between calls to advance the solution, or at the end of a simulation, users may retrieve a 
variety of optional outputs from SUNDIALS integrators.

§ GetDky (Dense solution output) – using the same infrastructure that performs interpolation in

   “normal” use mode, users may request values              for                       , where                      .

§ Time integration statistics:

— GetNumSteps – the total number of internal time steps since initialization

— GetCurrentStep – the current internal time step size

— GetCurrentTime – the current internal time (since this may have passed       )

— GetCurrentOrder (IDA/CVODE) – the current method order of accuracy

— GetEstLocalErrors – returns the current temporal error vector,

Optional Outputs – General Time Integration

tn�1  t  tn 0  k  kmax

tout

error 2 RN

dk

dtk
y(t)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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§ GetNumNonlinSolvIters – number of nonlinear solver iterations since initialization.

§ GetNumNonlinSolvConvFails – number of nonlinear solver convergence failures.

§ GetNumLinSolvSetups – number of calls to setup the linear solver or preconditioner.

§ GetNumLinIters – number of linear solver iterations since initialization.

§ GetNumLinConvFails – number of linear solver convergence failures.

§ GetNumJacEvals, GetNumJtimesEvals, GetNumPrecEvals, GetNumPrecSolves – the 
number of calls to user-supplied Jacobian/preconditioner routines.

Optional Outputs – Algebraic Solver Statistics
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§ GetErrWeights – returns the current error weight vector,            .

§ GetWorkspace – returns the memory requirements for the integrator.

§ GetLinWorkspace – returns the memory requirements for the linear solver.

§ GetNumRhsEvals, GetNumResEvals – returns the number of calls to the IVP RHS/residual 
function(s) by the integrator (nonlinear solve and time integration).

§ GetNumLinRhsEvals, GetNumLinResEvals – returns the number of calls to the IVP 
RHS/residual function(s) by the linear solver (Jacobian or Jacobian-vector product 
approximation).

Optional Outputs – Miscellaneous

w 2 RN
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Retrieving Output from the Integrators

Left: scalar-valued solver statistics from 
cvAdvDiffReac_kry.c 
 

Right: dense solution output from 
cvDisc_dns.c   
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This tutorial is only the beginning; SUNDIALS also supports a number of ‘advanced’ features to 
examine auxiliary conditions, change the IVP, and improve solver efficiency.

§ Root-finding – while integrating the IVP, SUNDIALS integrators can find roots of a set of 
auxiliary user-defined functions                                       ; sign changes are monitored between 
time steps, and a modified secant iteration (along with GetDky) zeros in on the roots.

§ Reinitialization – allows reuse of existing integrator memory for a “new” problem (e.g., when 
integrating across a discontinuity, or integrating many independent problems of the same size).  
All solution history and solver statistics are erased, but no memory is (de)allocated.

§ Constraint-handling – positivity/negativity/non-positivity/non-negativity constraints may be set 
on individual solution components (handled through time step size adjustments).

Advanced Features

gi(t, y(t)), i = 1, . . . , Nr
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§ Resizing (ARKODE) – allows resizing the problem and all internal vector memory, without 
destruction of temporal adaptivity heuristic information or solver statistics.  This is primarily 
useful when integrating problems with spatial adaptivity.

§ Sensitivity Analysis (CVODE/IDA) – allows computation of forward and adjoint solution 
sensitivities with respect to problem parameters.

§ Problem-specific algebraic solvers – users are encouraged to supply custom nonlinear solvers, 
linear solvers, or preconditioners that leverage problem structure and domain-specific 
knowledge (see next portion of Tutorial for additional information).

Advanced Features – Continued
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§ Overview of SUNDIALS (Carol Woodward)

§ How to use the time integrators (Daniel Reynolds)

§ Which nonlinear and linear solvers are available and how to use them (David Gardner)

§ Using SUNDIALS on (Pre) Exascale Machines (Cody Balos)

§ Brief: How to download and install SUNDIALS (Cody Balos)

Tutorial Outline
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§ SUNDIALS implicit integrators solve one or more nonlinear systems each time step:

§ SUNDIALS provides several nonlinear solver modules:

§ User-defined or problem-specific nonlinear solver modules can be supplied by wrapping the 
solver according to the SUNNonlinearSolver API.

Nonlinear Systems in SUNDIALS

Equations for Slides

David Gardner

August 2017

} (1)

1 CVODE

y0 = f(t, y), y(t0) = y0 (2)

F (yn) ⌘ yn � hn�n,0f(tn, y
n)� an = 0 (3)

G(yn) ⌘ hn�n,0f(tn, y
n) + an = yn (4)

2 CVODES

y0 = f(t, y, p), y(t0) = y0(p) (5)

3 ARKode

My0 = fE(t, y) + fI(t, y), y(t0) = y0 (6)

F (zi) ⌘ Mzi � hnA
I
i,ifI(t

I
n,i, zi)� ai = 0 (7)

4 IDA

F (t, y, y0) = 0, y(t0) = y0, y0(t0) = y00 (8)

F (tn, y
n, h�1

n

qX

i=0

↵n,iy
n�i) = 0 (9)

5 IDAS

F (t, y, y0, p) = 0, y(t0) = y0(p), y0(t0) = y00(p) (10)

1

root-finding 
problem

𝐹 𝑦 = 0

SUNNonlinearSolver 
API

Nonlinear Solver Modules

FIXED POINTNEWTON PETSC SNES

CVODE:      𝑦& − ℎ&𝛽&,(𝑓 𝑡&, 𝑦& − 𝑎& = 0

ARKODE:   𝑀𝑧) − ℎ&𝐴),)* 𝑓* 𝑡&,)* , 𝑧) − 𝑎) = 0

IDA:            𝐹 𝑡&, 𝑦&, ℎ&$# ∑)+(
, 𝛼&,)𝑦&$) = 0

CVODE:      ℎ&𝛽&,(𝑓 𝑡&, 𝑦& + 𝑎& = 𝑦&

ARKODE:   ℎ&𝐴),)* 𝑓* 𝑡&,)* , 𝑧) + 𝑎) = 𝑧)

Equations for Slides

David Gardner

August 2017

} (1)

1 CVODE

y0 = f(t, y), y(t0) = y0 (2)

F (yn) ⌘ yn � hn�n,0f(tn, y
n)� an = 0 (3)

G(yn) ⌘ hn�n,0f(tn, y
n) + an = yn (4)

2 CVODES

y0 = f(t, y, p), y(t0) = y0(p) (5)

3 ARKode

My0 = fE(t, y) + fI(t, y), y(t0) = y0 (6)

F (zi) ⌘ Mzi � hnA
I
i,ifI(t

I
n,i, zi)� ai = 0 (7)

4 IDA

F (t, y, y0) = 0, y(t0) = y0, y0(t0) = y00 (8)

F (tn, y
n, h�1

n

qX

i=0

↵n,iy
n�i) = 0 (9)

5 IDAS

F (t, y, y0, p) = 0, y(t0) = y0(p), y0(t0) = y00(p) (10)

1

G 𝑦 = 𝑦
fixed-point 

problem



41
LLNL-PRES-765149

§ By default SUNDIALS integrators solve 𝐹 𝑦 = 0 using a Newton iteration:

§ SUNDIALS provides several nonlinear solver modules:

§ User-defined or problem-specific linear solver modules can be supplied by wrapping the solver 
according to the SUNLinearSolver API.

Linear Systems in SUNDIALS

Equations for Slides

David Gardner

August 2017
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§ When using the default nonlinear solver (Newton), users only need to create and attach the 
desired linear solver object.

§ SUNDIALS defines three linear solver types:

— Direct: a matrix object is required and the solver computes the “exact” solution to the linear 
system defined by the matrix (e.g., Dense, LAPACK Band, KLU, SuperLU_DIST). 

— Iterative (matrix-free): a matrix object is not required and the solver computes an inexact 
solution to the linear system defined by the Jacobian-vector product routine (e.g., GMRES).

— Matrix-Iterative (matrix-based): a matrix object is required and the solver computes an 
inexact solution to the linear system defined by the matrix (e.g., hypre).

§ SUNDIALS provides several direct and iterative linear solver modules. 

§ Users may supply problem-specific direct, iterative, or matrix-iterative modules.

Linear Solver Types
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1. Initialize parallel or multi-threaded environment

2. Create vector of initial values, 𝑦& ∈ ℝ'; if using IDA, also create �̇�& ∈ ℝ(

3. Create and initialize integrator object (attaches 𝑡&, 𝑦&, (�̇�&), RHS/residual function(s))

4. Create matrix, linear solver, nonlinear solver objects (if applicable); attach to integrator

5. Specify optional inputs to integrator and solver objects (tolerances, etc.)

6. Advance solution in time, either over specified time intervals [𝑎, 𝑏], or for single timesteps

7. Retrieve optional outputs

8. Free solution/solver memory; finalize MPI (if applicable)

The “Skeleton” for Using SUNDIALS Integrators
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Direct linear solver example (Dense):
cvode/serial/cvRoberts_dns.c

a) Create a SUNMatrix object

SUNMatrix A = 
  SUNDenseMatrix(NEQ, NEQ)

b) Create the SUNLinearSolver object

SUNLinearSolver LS = 
  SUNLinSol_Dense(y, A)

c) Attach the linear solver

flag = 
  CVodeSetLinearSolver(cvode_mem,
                       LS, A)

Creating & Attaching a Linear Solver

Iterative linear solver example (GMRES):
ida/parallel/idaFoodWeb_kry_p.c

a) Create the SUNLinearSolver object

SUNLinearSolver LS = 
  SUNLinSol_SPGMR(cc, PREC_LEFT, 
                  maxl)

b) Attach the linear solver 

flag = 
  IDASetLinearSolver(ida_mem,  
                     LS, NULL)
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§ For direct or matrix-iterative linear solvers:

— SetJacFn – specifies a user-supplied function to evaluate the Jacobian 𝐽 ≡ 𝜕𝑓/𝜕𝑦.

— SetLinSysFn – specifies a user-supplied function to evaluate the linear system 𝐴 ≡ 𝐼 − 𝛾𝐽

• For dense and banded matrices the Jacobian may be computed internally with finite 
differences (default).

• For a sparse or user-defined matrix, the Jacobian or linear system function must be 
supplied.

§ For iterative linear solvers:

— SetJacTimes – specifies user-supplied Jacobian-vector product setup and times functions.

• By default Jacobian-vector products are computed internally using a finite difference

Supplying a Jacobian or Jacobian-vector Product Function



46
LLNL-PRES-765149

§ The IDASetPreconditioner function sets the preconditioner setup and solve functions:

— The setup function preprocesses and/or evaluates Jacobian-related data needed by the 
preconditioner: 

IDALsPrecSetupFn(realtype tt, N_Vector yy, N_Vector yp,
                 N_Vector rr, realtype c_j, void* user_data); 

— The solve function solves the preconditioner system 𝑃𝑧 = 𝑟: 

IDALsPrecSolvFn(realtype tt, N_Vector yy, N_Vector yp, N_Vector rr, 
                N_Vector rvec, N_Vector zvec, realtype c_j,
                realtype delta, void* user_data)

Supplying a Preconditioner (ida/parallel/idaFoodWeb_kry_p.c)
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§ Solver specific options include:

— SetGSType– sets the Gram-Schmidt orthogonalization type (CLASSICAL or MODIFIED).

— SetMaxRestarts – sets the max number of GMRES restarts.

— SetMaxl – updates the number of linear solver iterations.

§ Integrator options include:

— SetMaxStepsBetweenJac – (CVODE and ARKODE) – specifies the number of steps to 
wait before recommending to update the Jacobian or preconditioner. 

— SetMaxStepsBetweenLSet – (ARKODE) – specifies the number of steps between calls 
to the linear solver setup routine to potentially update the Jacobian or preconditioner. 

— SetEpsLin – specifies the scaling factor used to set the linear solver tolerance.

Integrator and Linear Solver Options
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§ SetMaxNonlinIters – sets the maximum number of nonlinear iterations.

§ SetNonlinConvCoef – specifies the scaling factor used to set the nonlinear solver tolerance.

§ Additional ARKODE options:

— SetLinear – specifies if the implicit system is linearly implicit.

— SetNonlinCRDown – sets the nonlinear convergence rate constant.

— SetNonlinRDiv – sets the nonlinear divergence ratio.

Nonlinear solver options
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SUNDIALS fixed point solver:
cvode/parallel/cvAdvDiff_non_p.c

a) Create the SUNNonlinearSolver object

SUNNonlinearSolver NLS =  
  SUNNonlinSol_FixedPoint(y, m)

b) Attach the nonlinear solver

flag = 
CVodeSetNonlinearSolver(cv_mem,
                        NLS)

Creating & Attaching a Non-default Nonlinear Solver

PETSc SNES:
arkode/C_petsc/ark_petsc_ex25.c

a) Create the SNES object

ierr = SNESCreate(my_comm, &snes)

b) Create the SUNNonlinearSolver object

SUNNonlinearSolver NLS = 
  SUNNonlinSol_PetscSNES(y, snes)

c) Attach the linear solver

ierr = 
  ARKStepSetLinearSolver(ark_mem,  
                         NLS)
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§ Example interfacing a hypre linear solver (and preconditioner) with ARKode:

— examples/arkode/CXX_parhyp/ark_heat_2D_hypre.cpp

— Creates a SUNMatrix wrapper for a hypre structured grid matrix

— Creates a SUNLinearSolver wrapper for the hypre PCG solver with PFMG preconditioner

— Matrix-iterative linear solver type

Supplying a Custom Linear Solver
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§ Constructor continued§ Header defining a SUNMatrix

§ Matrix specific content structure

§ Constructor to create a new matrix

Creating a SUNMatrix Wrapper

Operations are 
defined by the API

Optional operations 
may be NULL
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§ Constructor continued§ Header defining a SUNLinearSolver

§ Linear solver specific content structure

§ Constructor to create a new linear solver

Creating a SUNLinearSolver Wrapper

Operations 
are 
defined by 
the API

Optional 
operations 
may be 
NULL
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a) Create the SUNMatrix object

 SUNMatrix A = MyNewMatrix(…)

b) Create the SUNLinearSolver object

 SUNLinearSolver LS = MyNewLinearSolver(…)

c) Attach the linear solver e.g., 

 flag = ARKStepSetLinearSolver(mem, LS, A)

d) Set the function to compute the Jacobian (or linear system)

 flag = ARKStepSetJacFn(mem, JacFn)

Creating & Attaching the User-supplied Linear Solver
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§ Constructor to create a new nonlinear solver

§ Header defining a SUNNonLinearSolver

§ Nonlinear solver specific content structure

Creating a SUNNonlinearSolver Wrapper

Operations 
are defined 
by the API

Optional 
operations 
may be 
NULL

Note SUNDIALS integrators pose the nonlinear 
systems to solve in predictor-corrector form.
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§ Overview of SUNDIALS (Carol Woodward)

§ How to use the time integrators (Daniel Reynolds)

§ Which nonlinear and linear solvers are available and how to use them (David Gardner)

§ Using SUNDIALS on (Pre) Exascale Machines (Cody Balos)

§ Brief: How to download and install SUNDIALS (Cody Balos)

Tutorial Outline
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§ An introduction to SUNDIALS features for Pre-Exascale and Exascale machines

§ ManyVector and MPI+X NVector modules

§ A dive into the CUDA NVector module

§ Enabling fused vector operations

§ SUNDIALS GPU capable linear solvers

§ Steps to using SUNDIALS with GPUs

§ A High-Level look at a GPU-enabled SUNDIALS example

§ SUNDIALS GPU performance considerations

Using SUNDIALS on (Pre) Exascale Machines – Outline
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§ The Exascale landscape:
— Heterogeneous computational architectures
— GPUs provide most of the FLOPS

§ Two main strategies for using SUNDIALS:
1. SUNDIALS controls the main time-integration loop for the application, and a large ODE system is 

solved in a distributed manner (e.g. FEM applications) 
2. SUNDIALS is used as a local integrator for many small independent subsystems (e.g. per grid cell in 

an Adaptive Mesh Refinement application)

§ For strategy 1 at Exascale, the MPI ManyVector and MPI+X NVector modules as well as several GPU-
enabled “local” NVector modules are useful SUNDIALS features

§ For strategy 2 at Exascale, the ManyVector NVector module, several GPU-enabled “local” NVectors, and 
a SUNLinearSolver module for batched solves of small systems are useful SUNDIALS features

Using SUNDIALS on (Pre) Exascale Machines
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§ SUNDIALS’ integrators do not directly modify solution 
data; this is modified through vector operations, e.g., 
vector adds, norms, etc., defined by the NVector API

§ Several optional NVector implementations (modules) 
are released as a part of SUNDIALS

— CUDA, RAJA, and OpenMPDEV (target offloading) 
modules provide GPU support

— Parallel, ParHyp, PETSc, and Trilinos modules are 
MPI distributed

— ManyVector and MPIPlusX modules provide 
support for hybrid computation

§ It is straightforward to implement a problem-specific 
NVector tailored to an application

SUNDIALS NVector API

NVECTOR API

VECTOR MODULES

Parallel 
(MPI)

OpenMP

PETSc

RAJA

MPIPlusX

OpenMP 
DEV

Serial

PThread

CUDA

ManyVector

ParHyp 
(hypre)

Trilinos 
(Tpetra)
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The SUNDIALS ManyVector NVector module

§ A mechanism for users to partition their 
simulation data among disparate 
computational resources
— E.g., CPUs and GPUs

§ Does not touch any vector data directly, 
instead it is a software layer to treat a 
collection of other NVector objects as a 
single cohesive NVector

§ Can be used to easily partition data within 
a node or across nodes

§ Also can be used to combine distinct MPI 
intracommunicators together into a multi-
physics simulation

Figure 2, ManyVector use case for process-
based multiphysics decompositions, wherein 
Comm1 connects processes 0 and 1 with 
physics operating on red/blue data, Comm2 
connects processes 2 and 3 with physics 
operating on green/magenta data, and an MPI 
intercommunicator allows multiphysics coupling.

Figure 1, ManyVector use case for 
multi-rate or data partitioning, 
allowing for each vector to utilize 
distinct processing elements within 
the same node (e.g. red/blue on CPU 
and green/magenta on GPU) or for 
collective communications to be 
combined to minimize latency 
overhead (e.g., during Gram-Schmidt 
orthogonalization within linear or 
nonlinear solvers).
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§ If MPI is needed, include nvector_mpimanyvector.h, otherwise include nvector_manyvector.h

§ Constructors take an array of other NVector objects:

§ After construction, the ManyVector behaves like a single cohesive vector with data ordered according to 
the ordering of the subvectors in the vector array:

Using the ManyVector
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§ The N_VGetSubvector_[MPI]ManyVector function can be called to access the the subvectors after 
construction of the ManyVector

§ N_VGetSubvectorArrayPointer_[MPI]ManyVector and 
N_VSetSubvectorArrayPointer_[MPI]ManyVector are available convenience functions for 
accessing the data of a subvector, but note that not all subvectors may have data that is directly 
accessible (e.g. the CUDA NVector when using device memory)

§ Note: calling N_VDestroy on the ManyVector object does not destroy the subvectors!
— Need to destroy each subvector, then free the ManyVector:

Using the ManyVector
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ManyVector Performance Results

§ Developed a scalable multiphysics demonstration 
code using the new many-vector module, fused 
vector operations, and a third order explicit-
implicit multirate integrator

§ Observed 90% weak scaling efficiency using 40 
MPI ranks on each of 2 to 3,456 nodes of OLCF 
Summit (80 to 138,240 CPU cores)

𝜕𝒘
𝜕𝑡 = −∇ ' 𝑭 𝒘 + 𝑹 𝒘 + 𝑮(𝒙, 𝑡)

𝜌 𝑚! 𝑚"𝜌 𝑚# 𝑒$𝑒$𝑚# 𝜌 𝑚"𝑚! 𝑚" 𝑚#𝑒$ 𝑚!

𝒄𝒄𝒄

𝒘 𝒘 𝒘
Task 0 Task 1 Task 2
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§ The MPI+X NVector adds MPI capabilities to any local (single-node) NVector “X”

§ Really just a ManyVector with a single subvector and some convenience functions

§ Defined in the header nvector_mpiplusx.h

§ The constructor takes an MPI communicator and a local NVector

§ Note: you cannot call the local vector specific functions on the MPI+X vector
— E.g. cannot do N_VCopyToDevice_Cuda(x), instead do N_VCopyToDevice_Cuda(xlocal)
— The local vector can be accessed with the N_VGetLocalVector_MPIPlusX function 
— Other functions are provided for working with the local vector indirectly through the MPIPlusX vector 

§ Note: calling N_VDestroy on the MPI+X NVector object does not destroy the local vector, you must 
destroy the local vector separately

The SUNDIALS MPI+X NVector
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§ Can be constructed to utilize separate host and device memory or managed (unified virtual memory):
sunindextype length = 100;
realtype *host_data = malloc(…);
realtype *device_data = cudaMalloc(…);
realtype *uvm_data = cudaMallocManaged(…);

N_Vector x = N_VNew_Cuda(length);
x = N_VMake_Cuda(length, host_data, device_data);
x = N_VNewManaged_Cuda(length);
x = N_VMakeManaged_Cuda(length, uvm_data);

§ If using managed memory, a user can provide their own custom memory allocator routine. This is useful if 
you have a memory pool that you want to utilize.

void* myallocfn(size_t size) { return malloc(size); }
Void  myfreefn(void* ptr) { free(ptr); } 
x = N_VMakeWithManagedAllocator_Cuda(length, myallocfn, myfreefn);

§ To enable concurrent CUDA kernel execution, users can set the CUDA stream on which the CUDA 
kernels launched by the vector will execute:

cudaStream_t stream;
cudaStreamCreate(&stream);
N_VSetCudaStream_Cuda(x, &stream);

The CUDA NVector Module
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§ UVM can be a good way to get started with the CUDA NVector since it is like using the serial NVector
— Users don’t have to worry about data coherency
— Users can access underlying data with the generic N_VGetArrayPointer function

§ Using separate host and device memory offers significantly better performance than UVM and is 
recommended for production usage

§ When using separate host and device memory, these four functions will be useful:

realtype *N_VGetHostArrayPointer_Cuda(N_Vector v);
realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v);
void N_VCopyToDevice_Cuda(N_Vector v);
void N_VCopyFromDevice_Cuda(N_Vector v);

§ When using separate host and device memory, users must manually manage data coherency!
— After receiving control from SUNDIALS, you must call N_VCopyFromDevice_Cuda if you want to 

access the data on the host
— If you modify data on the host, you must then copy it to the device with N_VCopyToDevice_Cuda 

before passing control back to SUNDIALS
— SUNDIALS only operates on the device data and never moves it

The CUDA NVector Module
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CUDA NVector Code Example
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§ Fused vector operations increase computation per vector operation

§ Are particularly interesting when using GPUs because the CUDA kernel launch overhead associated with 
an operation is high

§ The NVector API defines 9 fused vector operations
— Can be enabled/disabled for vectors at runtime
— Can be enabled/disable individually or together

§ Note: Fused operations should be enabled/disabled prior to attaching the vector to an integrator:

Enabling Fused Vector Operations
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§ All SUNDIALS iterative linear solvers are MPI and GPU ready
— These solvers only modify data via vector operations, so you just need to use an appropriate NVector
— Users can provide preconditioners to reduce the number of iterations
— Perform well under strategy 1, but do not perform well under strategy 2 due to kernel launch overhead

§ SUNDIALS also offers an interface to the cuSOLVER sparse batched QR method
— Designed for block-diagonal linear systems where the matrix is of the form:

 
— All blocks 𝐴- must share the same sparsity pattern
— This type of system arises when grouping small independent subsystems together

§ Alternatively, you can provide a custom linear solver that conforms to the SUNLinearSolver API
— This allows users to take advantage of new solvers quickly 

SUNDIALS GPU capable linear solvers
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1. Identify your usage strategy (see the second slide in this section of the tutorial)

2. Switch to a GPU-enabled NVector
— Pair with the MPI ManyVector or MPI+X NVector module if distributing across nodes
— Can use your own GPU-enabled data structures under a custom NVector

3. Switch to a GPU-capable linear solver (if necessary)

4. Port right-hand side function to the GPU
— This is critical to avoiding excessive movement of data from the host to the device and vice versa 

(even when using UVM)

5. Port Jacobian function to the GPU (if necessary)
— Also critical to avoiding excessive data movement
— Caveat: SUNDIALS does not provide a GPU-enabled sparse matrix yet, but will very soon

Steps to using SUNDIALS with GPUs
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A High-Level Look at a GPU-enabled SUNDIALS example

Host function that unpacks data and launches 
(executes) the residual CUDA kernel. This is 
what will be provided to IDAInit().

CUDA kernel that does actual residual 
computation on the GPU

This example solves a 2D heat equation with IDA and the SPGMR 
linear solver (so no Jacobian function is needed).
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A High-Level Look at a GPU-enabled SUNDIALS example

uu is initialized on the host

CUDA vector is created to use separate host 
and device memory

uu is copied to the device

up is initialized on the device
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A High-Level Look at a GPU-enabled SUNDIALS example

IDA is initialized, the host function, 
resHeat, that calls the CUDA 
kernel is provided to IDA.
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§ Under strategy 1, speedup is easier to obtain
— Long vectors and “heavy” right-hand side 

functions can overcome overhead

§ Under strategy 2, need to group independent 
subsystems into a larger system
— Can introduce other problems, like 

heterogeneity in subsystem stiffness

§ We are actively working on new features for 
increasing performance with GPUs

§ We are interested in any results form profiling 
SUNDIALS+GPUs in your application

§ Talk to us about any other performance 
concerns/questions

SUNDIALS GPU Performance Considerations
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§ Overview of SUNDIALS (Carol Woodward)

§ How to use the time integrators (Daniel Reynolds)

§ Which nonlinear and linear solvers are available and how to use them (David Gardner)

§ Using SUNDIALS on (Pre) Exascale Machines (Cody Balos)

§ Brief: How to download and install SUNDIALS (Cody Balos)

Tutorial Outline
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§ Download the tarball from the SUNDIALS website and build with CMake
— https://computing.llnl.gov/projects/sundials/sundials-software
— Latest (v5.1.0) and archived versions, and individual packages (e.g., CVODE) available
— Most configurable

§ Download the tarball from the SUNDIALS GitHub page and build with CMake
— https://github.com/LLNL/sundials/releases
— Latest and archived versions available
— Most configurable

§ Install SUNDIALS using Spack 
— “spack install sundials”
— Latest and recent versions available
— Highly configurable via spack variants. E.g., “spack install sundials+cuda”.

§ Install SUNDIALS as part of the xSDK using Spack
— “spack install xsdk”
— Will install the xSDK with SUNDIALS v5.0.0

Acquiring SUNDIALS

https:///
https://computing.llnl.gov/projects/sundials/sundials-software
https://computation.llnl.gov/projects/sundials/sundials-software
https://github.com/LLNL/sundials/releases
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§ Spack (see https://spack.io/) is an easy way to install SUNDIALS

§ The SUNDIALS team maintains a Spack package that allows a user to easily install 
SUNDIALS with one command: spack install sundials

§ The default configuration installed with spack install sundials depends on the 
environment

§ Use the command spack spec sundials to see what SUNDIALS options spack 
install sundials will turn on

§ The SUNDIALS spack installation is configured through Spack “variants”

§ Run spack info sundials to see the available “variants” of SUNDIALS available

§ SUNDIALS with MPI and hypre enabled can be installed with the command:

 % spack install sundials+mpi+hypre

Installing SUNDIALS with Spack Spack

https://spack.io/
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Spack
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§ The Extreme-scale Scientific Software Development Kit (xSDK) provides a foundation for an 
extensible scientific software ecosystem

§ As a member of the xSDK, SUNDIALS is installed with the xSDK Spack package

% spack install xsdk

§ SUNDIALS v5.0.0 (v5.1.0 is the newest) is included in the latest xSDK release - v0.5.0

§ See https://xsdk.info for more information about the xSDK and getting it installed

Installing SUNDIALS via the xSDK

https://xsdk.info/
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§ An in-depth guide on building and installing SUNDIALS is contained in the root of all 
SUNDIALS tarballs as INSTALL_GUIDE.pdf

§ The guide details how to configure SUNDIALS with CMake as well as every possible 
SUNDIALS CMake option

§ The guide can also be found in Appendix A of the user guide for any SUNDIALS package

§ Users can also check the sundials-users email list archive at: 
http://sundials.2283335.n4.nabble.com  

§ Users can post queries to the sundials-users email list.  For more info see: 
https://computing.llnl.gov/projects/sundials/support 

Help Building and Installing SUNDIALS

http://sundials.2283335.n4.nabble.com/
https://computing.llnl.gov/projects/sundials/support
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§ Overview of SUNDIALS (Carol Woodward)

§ How to use the time integrators (Daniel Reynolds)

§ Which nonlinear and linear solvers are available and how to use them (David Gardner)

§ Using SUNDIALS on (Pre) Exascale Machines (Cody Balos)

§ Brief: How to download and install SUNDIALS (Cody Balos)

§ Closing Remarks (Carol)

Tutorial Outline
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§ Visit the SUNDIALS website (Google LLNL SUNDIALS)
https://computing.llnl.gov/projects/sundials 

§ Where to get this tutorial:
— SUNDIALS/hypre ECP Project Confluence Tutorials page: 

https://confluence.exascaleproject.org/display/STLM12/Tutorials
— ECP Meeting Confluence Page: 

https://confluence.exascaleproject.org/display/2020ECPAM/Sessions 

§ Come to our poster – Wed. during the three breaks

§ Come to our breakout session and tell us what you want SUNDIALS to do for you.  
Thur. 8:30-10:00, Champions VII

§ Send any of us an email.  We frequently do WebEx discussions with ECP users to go through 
interfaces and discuss use cases

Where to learn more

Pick up your SUNDIALS sticker!!!!!!

Get more M&Ms!!!!

https://computing.llnl.gov/projects/sundials
https://confluence.exascaleproject.org/display/STLM12/Tutorials
https://confluence.exascaleproject.org/display/2020ECPAM/Sessions
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