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➢Overview of SUNDIALS (Dan)

▪ How to use the time integrators (Dan)

▪ Using SUNDIALS on GPU-based HPC platforms (David)

▪ Brief: How to download and install SUNDIALS (David)

▪ Closing Remarks (Dan)

Tutorial Outline
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▪ SUNDIALS is a software library consisting of ODE and 
DAE integrators and nonlinear solvers

▪ Written in C with interfaces to modern Fortran 

▪ New interfaces in Matlab starting with release R2024a

▪ Designed to be incorporated into existing codes

▪ Through the DOE Exascale Computing Project, 
developed a rich infrastructure of support on exascale
systems and applications

▪ Freely available; released under the BSD 3-Clause 
license ( >100,000 clones/downloads per year)

▪ Active user community supported by sundials-users 
email list

▪ Detailed user manuals included with each package and 
online at https://sundials.readthedocs.io

SUite of Nonlinear and DIfferential-
ALgebraic Solvers

https://computing.llnl.gov/casc/sundials

▪ Nonlinear and linear solvers and all data use is fully 
encapsulated from the integrators and can be user-
supplied

▪ All parallelism is encapsulated in vector and solver 
modules and user-supplied functions

https://sundials.readthedocs.io/
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▪ CVODE, IDA, and sensitivity analysis variants (forward and adjoint), CVODES and IDAS, use linear multistep 
methods

— CVODE solves ODEs, ሶ𝑦 = f(t, y)

— IDA  solves DAEs, 𝐹(𝑡, 𝑦, ሶ𝑦) = 0

— Adaptive in both order and step sizes

— Both packages include stiff BDF methods

— CVODE includes nonstiff Adams-Moulton methods

▪ ARKODE provides adaptive one-step, multistage time integration methods

— Provides support for users with changing problem structures (e.g., adaptive mesh algorithms)

▪ All 5 packages include event detection

— After each time step check whether user-provided functions change sign and stop integration if so

SUNDIALS offers packages with linear multistep and 
multistage time integration methods
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ARKODE, an adaptive Runge-Kutta package, was released 
in SUNDIALS in 2015
▪ Provides an infrastructure for rapid development of general, adaptive, one-step methods:

— ARKODE provides the outer time integration loop

— Time-stepping modules handle problem-specific components: problem definition, algorithm for a single step

— Modules leverage a shared infrastructure 

• Different methods for controlling step size adaptivity

• Other features such as rootfinding, constraint handling, etc.

— Supports parallel-in-time capabilities via a native interface to the XBraid library

▪ There are currently four time-stepping modules available:

ARKStep: ERK, DIRK, and ImEx-ARK methods

𝑀 𝑡  𝑦′ = 𝑓𝐸 𝑡, 𝑦 + 𝑓𝐼 𝑡, 𝑦 , 𝑦 𝑡0 = 𝑦0

ERKStep: streamlined module for ERK methods 

𝑦′ = 𝑓 𝑡, 𝑦 , 𝑦 𝑡0 = 𝑦0

MRIStep: Multirate infinitesimal methods 

𝑦′ = 𝑓𝐹 𝑡, 𝑦 + 𝑓𝑆 𝑡, 𝑦 , 𝑦 𝑡0 = 𝑦0

SPRKStep: Symplectic partitioned RK methods

𝑝′ = 𝑓 𝑡, 𝑞 , 𝑝 𝑡0 = 𝑝0

𝑞′ = 𝑓 𝑡, 𝑝 , 𝑞 𝑡0 = 𝑞0
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SUNDIALS provides adaptive time stepping choosing time 
steps to minimize local error and maximize efficiency

▪ Time step selection

— Based on the method, estimate the time step error, E(t), using an 
embedded method of one lower order (RK) or direct error estimate (LMM)

— Accept step if ||E(t)||WRMS < 1; Reject it otherwise

— Choose next step, t’, so that ||E(t’)|| WRMS is expected to be small

▪ Some algorithms also allow order adaption: choose the order that gives the 
largest step expected to meet the error condition

▪ ARKODE supplies advanced “error controllers” which can adapt these 
step sizes to meet other objectives:
— minimize failed steps
— maximize step sizes
— maintain smooth transitions in the step sizes as integration proceeds

Adaptivity can give much more 
efficient (and  accurate) results
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KINSOL solves systems of nonlinear algebraic equations, F(u) = 0

▪ Newton Solvers: update iterate via 

— Get update by solving:

— Inexact method approximately solves this equation

▪ Dynamic linear tolerance selection for use with iterative linear solvers

▪ Can separately scale equations and unknowns

▪ Backtracking and line search options for robustness

▪ KINSOL also solves fixed point and Picard iterations with optional Anderson acceleration
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SUNDIALS uses modular design and control inversion to interface with 
application codes, external solvers, and encapsulate parallelism

▪ Control passes between the integrator, solvers, and application code as the integration progresses

▪ Nonlinear and linear solver modules are designed for generic systems

Time integrator and nonlinear 
solver are agnostic of vector data 
layout and specific solvers used

Application / 
discretization 
framework:

RHS Function, f 
RHS Jacobian, Jf

Preconditioner, P

Linear solver

Time integrator

Nonlinear solver

z

x

z0, F, JF

Axm, P-1rm

Application Code

yn+1t0, y0, f, Jf

A, x0, b

Generic Solver 
Interfaces

zm

F(zm), JF(z
m)

xm, rm 
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▪ SUNDIALS was architected to encapsulate the integrators from both the nonlinear 
and linear solvers as well as the data structures

— Allows for flexibility to introduce new solvers, nonlinear and linear

— Allows for greater portability to new GPU-based architectures

▪ Support for NVIDIA, AMD, and Intel GPUs 

— On-node GPU vectors: CUDA, HIP, SYCL, RAJA (CUDA and HIP backends), and 
OpenMPDEV (target offload), kokkos

— MPI distributed vectors: Parallel, ParHyp (hypre), PETSc, and Trilinos

— ManyVector and MPIPlusX modules support for hybrid computation

▪ Interfaces to many linear solvers 
SUNNonlinearSolver

Interface

Nonlinear Solvers

Newton Fixed Point

PETSc SNES

N_Vector

Interface

Vectors

Serial Parallel (MPI)

PThreads OpenMP

CUDA

HIP

ParHyp (hypre)

PETSc

ManyVector

MPI + X

OpenMP DEV

MPI ManyVector

Trilinos

RAJA

SYCLKokkos

SUNLinearSolver

Interface

Linear Solvers

SPTFQMR SPBCGSPFGMR PCGSPGMR

Dense SuperLU MTBand KLULAPACK Dense LAPACK Band

SuperLU DIST cuSOLVER MAGMA Dense Ginkgo oneMKL Dense Kokkos Kernels

GPU-capable modules Planned GPU support

SUNDIALS integrators and nonlinear solvers are written 
on top of a set of common vector and solver APIs
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With efficient solvers and algorithms, Pele codes were some of the 
first to run on the Frontier exascale system

Isosurfaces of diesel fuel entering a turbulent methane-air 
premixture at 60 atm. High temperature pockets (seen in red 
and yellow) form when local kernels of diesel fuel ignite. The 
simulation size increases over time, growing up to 1B degrees 
of freedom, as fine-grid resolution tracks the evolving 
turbulent jets. 

Courtesy of Marc Day and Jon Rood (NREL). Animation 
created by Nicholas Brunhart-Lupo (NREL) based on a 
simulation performed on ORNL’s Crusher machine. This research was supported by the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department of Energy 
Office of Science and the National Nuclear Security Administration.

This problem was run on 7,000 nodes of the ORNL 
Frontier Exascale machine where SUNDIALS used 
GPUs to solve chemistry systems on every grid cell 
in a 7-layer adaptive mesh hierarchy for a problem 
with 60B grid cells and approximately 2.4T degrees 
of freedom

Several SUNDIALS team members were included in the 
Pele Suite Developers who were 2024 R&D100 Finalists.
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SUNDIALS Team

Current Team:

Alumni:

Cody Balos David Gardner Alan Hindmarsh Dan Reynolds Steven Roberts

Radu Serban

Scott D. Cohen, Peter N. Brown, George Byrne, Allan G. Taylor, 
Steven L. Lee, Keith E. Grant, Aaron Collier, Lawrence E. Banks, 
Steve G. Smith, Cosmin Petra, Homer Walker, Slaven Peles, John 
Loffeld, Dan Shumaker, Ulrike M. Yang, James Almgren-Bell, Shelby 
L. Lockhart, Rujeko Chinomona, Daniel McGreer, Hunter Schwartz, 
Hilari C. Tiedeman, Ting Yan, Jean M. Sexton, and Chris White

Carol Woodward

Postdocs:

Mustafa Aggul Sylvia Amihere
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▪ Overview of SUNDIALS (Dan)

➢How to use the time integrators (Dan)

▪ Using SUNDIALS on GPU-based HPC platforms (David)

▪ Brief: How to download and install SUNDIALS (David)

▪ Closing Remarks (Dan)

Tutorial Outline
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1. Create a SUNDIALS Context object

2. Create a SUNMemoryHelper (optional)

3. Create an NVector and fill it with the initial condition

4. Create and initialize the time integrator

5. Set the integrator tolerances

6. Create and attach algebraic solver objects (if necessary)

7. Set optional integrator/solver inputs

8. Advance the solution in time

9. Get optional integrator/solver statistics

10. Free integrator and objects

The “Skeleton” for Using SUNDIALS Integrators
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While written in C, SUNDIALS fully supports applications written in C++ or modern Fortran:

▪ Leverage the iso_c_binding module and the bind(C) attribute from the F2003 standard.

▪ SUNDIALS’ F2003 interfaces closely follow the C/C++ API.

▪ Generic SUNDIALS structures, e.g. , N_Vector, are interfaced as Fortran derived types, and 

function signatures are matched but with an F prepending the name, e.g. FN_VDotProd instead 

of N_VDotProd. 

▪ Constants are named exactly as they are in the C/C++ API.

▪ Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using it in C/C++.

The remainder of this tutorial will therefore focus on C/C++; please reserve questions regarding 

the Fortran interface for one-on-one discussions.

C/C++ vs Fortran



15Center for Advanced Computation, PPPL, Sept. 25, 2024

▪ As discussed earlier, all SUNDIALS integrators operate on data through the N_Vector API.

▪ Each provided vector module has a unique set of “constructors”, e.g.
    
    N_Vector N_VMake_Hip(sunindextype length, sunrealtype* h_data, sunrealtype* d_data, 
                         SUNContext sunctx);

    N_Vector N_VMake_Sycl(sunindextype length, sunrealtype* h_data, sunrealtype* d_data, 
                          ::sycl::queue* Q, SUNContext sunctx);

    N_Vector N_VMake_MPIPlusX(MPI_Comm comm, N_Vector x, SUNContext sunctx);

▪ The CUDA, RAJA and OpenMPDEV vector modules have similar constructors to HIP, above.

▪ Existing application codes may provide a thin N_Vector wrapper to “teach” SUNDIALS how to 
operate directly on their data structures.

▪ Once an application creates a vector for their data, they fill it with the initial conditions for the 
problem and supply it to the integrator, who “clones” it to create its workspace.

▪ For Kokkos, PETSc, hypre, and Trilinos, SUNDIALS NVector wrappers require only the native vector 
structure and the SUNDIALS context.

Supplying the Initial Condition Vector(s)



16Center for Advanced Computation, PPPL, Sept. 25, 2024

Once the problem data is encapsulated in a vector, all that remains for basic SUNDIALS usage is 

specification of the IVP itself:

▪ CVODE and ARKODE specify the IVP through right-hand side function(s):

 int (*RhsFn)(sunrealtype t, N_Vector y, N_Vector ydot, void *user_data)

▪ IDA specifies the IVP through a residual function:

 int (*ResFn)(sunrealtype t, N_Vector y, N_Vector ydot, N_Vector r, 
                    void *user_data)

▪ The *user_data  pointer enables problem-specific data to be passed through the SUNDIALS 

integrator and back to the RHS/residual routine (i.e., no global memory).

Supplying the IVP to the Integrator – RHS/Residual Functions
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CVODE/ARKODE RHS Functions

Example: 

cvDisc_dns.c
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The IVP inputs are supplied when constructing the integrator.

Initializing the Integrators – CVODE and IDA

CVODE

IDA
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Initializing the Integrators – ARKODE 

ImEx (top), implicit (middle), explicit (bottom) Multirate with ImEx at both time scales
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A variety of optional “Set” routines allow enhanced control over the integration process.  Here we 
discuss the most often-utilized options (see documentation for the full set).

▪ Tolerance specification – rtol with scalar or vector-valued atol, or user-specified routine to 
compute the error weight vector

▪ SetNonlinearSolver, SetLinearSolver – attaches desired nonlinear solver, linear solver and 
(optionally) matrix modules to the integrator.

▪ SetUserData – specifies the (void *user_data) pointer that is supplied to user routines.

▪ SetMaxNumSteps, SetMaxStep, SetMinStep, SetInitStep – provides guidance to time step adaptivity 
algorithms.

▪ SetStopTime – specifies the value of tstop to use when advancing solution (this is retained until 
this stop time is reached or modified through a subsequent call).

Optional Inputs (all Integrators)

https://sundials.readthedocs.io/en/latest/
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After constructing the integrator, additional options may be supplied through various “Set” 
routines (example from ark_heat1D_adapt.c):

Supplying Options to the Integrators
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While     is supplied at initialization, the direction of integration is specified on the first call to 

advance the solution toward the output time       .  This may occur in one of four “usage modes”:

▪ Normal – take internal steps until        is overtaken in the direction of integration, e.g. for 

forward integration                           ;  the solution            is then computed by interpolation.

▪ One-step – take a single internal step                    and then return control back to the calling 

program. If this step will overtake        then             is interpolated; otherwise      is returned.

▪ Normal + TStop – take internal steps until the next step will overtake         ; limit the next 

internal step so that                .  No interpolation is performed.

▪ One-step + TStop – performs a combination of both “One-step” and “TStop” modes above.

Usage Modes for SUNDIALS Integrators
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Once all options have been set, the integrator is called to advance the solution toward tout.

Advancing the Solution

IDA

CVODE

ARKODE
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Either between calls to advance the solution, or at the end of a simulation, users may retrieve a 

variety of optional outputs from SUNDIALS integrators via “Get” routines.

▪ GetDky (Dense solution output) – using the same infrastructure that performs interpolation in

   “normal” use mode, users may request values              for                       , where                      .

▪ Time integration statistics:

— GetNumSteps – the total number of internal time steps since initialization

— GetCurrentStep – the current internal time step size

— GetCurrentTime – the current internal time (since this may have passed       )

— GetCurrentOrder (IDA/CVODE) – the current method order of accuracy

— GetEstLocalErrors – returns the current temporal error vector,

Optional Outputs – General Time Integration
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▪ GetNumNonlinSolvIters – number of nonlinear solver iterations since initialization.

▪ GetNumNonlinSolvConvFails – number of nonlinear solver convergence failures.

▪ GetNumLinSolvSetups – number of calls to setup the linear solver or preconditioner.

▪ GetNumLinIters – number of linear solver iterations since initialization.

▪ GetNumLinConvFails – number of linear solver convergence failures.

▪ GetNumJacEvals, GetNumJtimesEvals, GetNumPrecEvals, GetNumPrecSolves – the number of calls to 

user-supplied Jacobian/preconditioner routines.

Optional Outputs – Algebraic Solver Statistics
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Retrieving Output from the Integrators

Above: dense solution output from 
cvDisc_dns.c   

Left: scalar-valued solver statistics from 
cvAdvDiff_kry_cuda.cu 
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This tutorial is only the beginning; SUNDIALS also supports a number of ‘advanced’ features to 

examine auxiliary conditions, change the IVP, and improve solver efficiency.

▪ Root-finding – while integrating the IVP, SUNDIALS integrators can find roots of a set of 

auxiliary user-defined functions                                       ; sign changes are monitored between 
time steps, and a modified secant iteration (along with GetDky) zeros in on the roots.

▪ Reinitialization – allows reuse of existing integrator memory for a “new” problem (e.g., when 

integrating across a discontinuity, or integrating many independent problems of the same size).  

All solution history and solver statistics are erased, but no memory is (de)allocated.

▪ Constraint-handling – positivity / negativity / non-positivity / non-negativity constraints may be 

set on individual solution components (handled through time step size adjustments).

Advanced Features
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▪ Resizing (ARKODE) – allows resizing the problem and all internal vector memory, without 

destruction of temporal adaptivity heuristic information or solver statistics.  This is primarily 

useful when integrating problems with spatial adaptivity.

▪ Relaxation (ARKODE) – adjusts the step size to help preserve a scalar-valued quantity of 

interest (e.g., total energy), without requiring use of special integrators or recomputing time 

steps.

▪ Sensitivity Analysis (CVODES / IDAS) – allows computation of forward and adjoint solution 

sensitivities with respect to problem parameters.

▪ Problem-specific algebraic solvers – users are encouraged to supply custom nonlinear solvers, 

linear solvers, or preconditioners that leverage problem structure and domain-specific 

knowledge.

Advanced Features – Continued
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▪ Overview of SUNDIALS (Dan)

▪ How to use the time integrators (Dan)

➢Using SUNDIALS on GPU-based HPC platforms (David)

▪ Brief: How to download and install SUNDIALS (David)

▪ Closing Remarks (Dan)

Tutorial Outline
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▪ SUNDIALS’ object-oriented design enables supporting various GPUs with class implementations 

targeting different programming models e.g., CUDA, HIP, SYCL, Kokkos, RAJA, etc.

▪ To leverage GPU acceleration:

— Compile SUNDIALS with GPU features enabled e.g., ENABLE_CUDA=ON, ENABLE_HIP=ON, etc.

— Utilize GPU-enabled class implementations i.e., vectors, matrices, and algebraic solvers

— Supply callback functions that leverage GPU acceleration e.g., ODE right-hand side functions

▪ Primary uses cases:

1. SUNDIALS controls the main time-integration loop, and evolves a large ODE system in a distributed 

manner (MPI+X) e.g., FEM, FD, or FV applications

2. SUNDIALS is used as a local integrator for many independent subsystems within a larger problem e.g., 

combustion applications evolving local reaction systems in each grid cell within the spatial mesh

SUNDIALS Supports AMD, Intel, and NVIDIA GPUs
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▪ The SUNDIALS integrator and solver logic is on 

the host and launches kernels to perform 

operations on data in device memory

▪ In case 1, speedup is easier to obtain

— Long vectors and “heavy” right-hand side 

functions can overcome overhead

▪ In case 2, need to group independent 

subsystems into a larger system

— Can introduce other problems, like 

heterogeneity in subsystem stiffness

▪ The key factor is to ensure the GPUs have 

sufficient work to hide overheads from kernel 

launch latency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

300x300 600x600 300x300 w/ heavy rhs 600x600 w/ heavy rhs

Mesh Size

2D Unpreconditioned Heat Problem
using  ARKODE and GMRES: 

Percentage Breakdown of Operations

Streaming Vector Ops Reduction Vector Ops Other Integrator Ops User Code (RHS)

The “heavy” RHS includes a 2x cost sleep function 
in the RHS evaluation to mimic applications with 
more work in the RHS function

Key Considerations When Using SUNDIALS With GPUs
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▪ The user must ensure data coherency between the CPU host and GPU-device

— SUNDIALS integrators do not internally migrate data from one memory space to another

— The location of the data depends entirely on the object implementations utilized

▪ For optimal performance it is critical to minimize data movement between the host and device

— It is recommended to only access data in the device memory space as much as possible

— Ideally, data would reside in device memory for the entire duration of the simulation

▪ SUNDIALS-provided GPU-enabled objects keep data resident in the GPU-device memory

— When control passes from the user to SUNDIALS, simulation data must be up-to-date in the device 

memory space (unless using UVM)

— Similarly, when control returned from SUNDIALS to the user, it should be assumed that any simulation 

data is only up-to-date in the device memory space

Key Considerations When Using SUNDIALS With GPUs
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1. Create a SUNDIALS Context object

2. Create a SUNMemoryHelper (optional)

3. Create an NVector and fill it with the initial condition

4. Create and initialize the time integrator

5. Set the integrator tolerances

6. Create and attach algebraic solver objects (if necessary)

7. Set optional integrator/solver inputs

8. Advance the solution in time

9. Get optional integrator/solver statistics

10. Free integrator and objects

SUNDIALS Time Integrator Program Skeleton
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▪ Consider a case with many independent ODEs combined into a larger group and evolved together

▪ In this example, we evolve a stiff, three species Brusselator reaction problem

𝑑𝑢

𝑑𝑡
= 𝑎 − 𝑤 + 1 𝑢 + 𝑣𝑢2

𝑑𝑣

𝑑𝑡
= 𝑤𝑢 − 𝑣𝑢2

𝑑𝑤

𝑑𝑡
= Τ(𝑏 − 𝑤) 𝜖 − 𝑤𝑢

▪ The problem is replicated ngroups times giving a total problem size of 3*ngroups to evolve

▪ Advance the system in time with CVODE adaptive order and step BDF methods with a modified 

Newton iteration and the MAGMA batched direct linear solver

▪ CUDA / HIP (MAGMA): examples/cvode/magma/cv_bruss_batched_magma.cpp

▪ Kokkos (Kokkos Kernels): examples/cvode/kokkos/cv_bruss_batched_magma.cpp 

▪ SYCL (oneMKL): examples/cvode/CXX_onemkl/cvRoberts_blockdiag_onemkl.cpp (similar)

▪ CUDA (cuSPARSE): examples/cvode/cuda/cvRoberts_block_cusolversp_batchqr.cu (similar)

Walkthrough a GPU-enabled SUNDIALS example

https://github.com/LLNL/sundials/blob/main/examples/cvode/magma/cv_bruss_batched_magma.cpp
https://github.com/LLNL/sundials/blob/main/examples/cvode/kokkos/cv_bruss_batched_kokkos.cpp
https://github.com/LLNL/sundials/blob/main/examples/cvode/CXX_onemkl/cvRoberts_blockdiag_onemkl.cpp
https://github.com/LLNL/sundials/blob/main/examples/cvode/cuda/cvRoberts_block_cusolversp_batchqr.cu
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▪ SUNDIALS is comprised of a collection of independent and interchangeable modules each with 

their own header file and library

▪ Typical includes: vector, matrix (if using a matrix-based solver), linear solver, and integrator

▪ sundials_core.hpp provides access to C++ RAII safe classes that wrap some SUNDIALS objects 

e.g., the SUNContext (more on this next)

Brusselator Example: SUNDIALS Headers

#include <sundials/sundials_core.hpp>        /* C++ Convenience classes   */

#include <sunmemory/sunmemory_cuda.h>        /* CUDA Memory Helper        */ 

#include <nvector/nvector_cuda.h>            /* CUDA Vector               */ 

#include <sunmatrix/sunmatrix_magmadense.h>  /* MAGMA Dense Matrix        */ 

#include <sunlinsol/sunlinsol_magmadense.h>  /* MAGMA Dense Linear Solver */ 

#include <sunlinsol/sunlinsol_spgmr.h>       /* GMRES Linear Solver       */

#include <cvode/cvode.h>                     /* CVODE Integrator          */
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1. Create a SUNDIALS Context object

2.

3.

4.

5.

6.

7.

8.

9.

10.

SUNDIALS Time Integrator Program Skeleton
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▪ Users must create a SUNContext object prior to any other calls to SUNDIALS library functions

▪ All SUNDIALS objects hold a reference to a common SUNContext object (in this case wrapped 
in the sundials::Context convenience class for C++ codes)

▪ For MPI problems, the constructor takes an MPI communicator i.e., sunctx(global_comm)

▪ This class supports common capabilities cross SUNDIALS:

— Error handling

— Performance profiling (with optional support for Caliper, software.llnl.gov/Caliper)

— Status logging

Brusselator Example: SUNContext Object

int main(int argc, char* argv[])
{
  ...

 /* Create the SUNDIALS context */
  sundials::Context sunctx;

https://sundials.readthedocs.io/en/latest/sundials/Errors_link.html
https://sundials.readthedocs.io/en/latest/sundials/Profiling_link.html
https://software.llnl.gov/Caliper/
https://sundials.readthedocs.io/en/latest/sundials/Logging_link.html
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1.

2. Create a SUNMemoryHelper (optional)

3.

4.

5.

6.

7.

8.

9.

10.

SUNDIALS Time Integrator Program Skeleton
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Brusselator Example: SUNMemoryHelper Object (optional)

▪ The SUNMemoryHelper provides an interface that allows applications to utilized their own memory 

pools or memory abstraction layer under SUNDIALS GPU enabled objects.

Alloc Creates SUNMemory object and allocates memory of a given type and size, required

Dealloc Frees memory own by a SUNMemory object and destroys the object, required

Copy Synchronously copies data between SUNMemory objects, required

CopyAsync Asynchronously copies data between SUNMemory objects, optional

Clone Creates a clone of a SUNMemoryHelper, optional

Destroy Destroys a SUNMemoryHelper, optional

▪ Native SUNMemoryHelper implementations are provided for Cuda, Hip, and Sycl

▪ AMReX and MFEM provide SUNMemoryHelpers wrapping their own memory pool / allocators

/* Create a CUDA SUNMemoryHelper */
SUNMemoryHelper memhelper = SUNMemoryHelper_Cuda(sunctx);
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▪ SUNDIALS modifies data through vector operations 

defined by the NVector interface (sum, norms, etc.)

▪ GPU implementations are provided with SUNDIALS:

— HIP, SYCL, CUDA, RAJA with CUDA, HIP, or SYCL 

backends, and OpenMP DEV (target offloading)

— MPI ManyVector and MPI+X modules enable data 

partitioning and support for hybrid MPI+X computation

▪ Many of the native GPU vectors support:

— Separate host and device or managed (UVM) memory

— User-defined memory pools (SUNMemoryHelper)

— User-defined execution policies (ExecPolicy)

▪ Straightforward to create a vector e.g., AMReX and 

SAMRAI provide their own NVector implementations

NVector

Interface

Serial

Parallel (MPI)

PThreads OpenMP

CUDA

ParHyp 
(hypre)

RAJA

ManyVector

HIP

Kokkos

SYCL

(DPC++)

PETSc

Trilinos
MPI 

ManyVector
MPI + X

OpenMP Dev
(Offload)

SUNDIALS GPU Enabled Vectors
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▪ All GPU-enabled vectors support separate host and device memory

▪ Nearly all support managed memory (UVM), the only exception is the OpenMP Dev vector

▪ Using separate host and device memory offers significantly better performance than UVM and 

is recommended for production usage

▪ When using separate host and device memory, users must manage data coherency!

— SUNDIALS only operates on the device data and never moves it

— After receiving control from SUNDIALS, you must call N_VCopyFromDevice_Cuda if you want 

to access the data on the host

— If you modify data on the host, you must copy it to the device with before passing control 
back to SUNDIALS using N_VCopyToDevice_Cuda

SUNDIALS GPU Enabled Vectors
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// Create vector with separate host and device data arrays
N_Vector N_VNew_**(sunindextype length, SUNContext ctx)

// Create vector with a “unified memory” data array
N_Vector N_VNewManaged_**(sunindextype length, SUNContext ctx)

▪ For the Cuda, Hip, Sycl, Raja, or OpenMPDEV vectors

Creating SUNDIALS GPU Vectors

▪ For the Sycl vector, the constructor also requires a queue e.g., 

N_Vector N_VNew_**(sunindextype length, sycl::queue queue, SUNContext ctx)

▪ For the Kokkos, we use a C++ class that is convertible to an NVector and wraps Kokkos views

// Create a Kokkos vector using the CUDA execution space
sundials::kokkos::Vector<Kokkos::Cuda> y{length, ctx}
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▪ Cuda, Hip, Sycl, Raja, or OpenMPDEV vectors can also be created from existing data 

Creating SUNDIALS GPU Vectors

// Create vector from existing separate host and device data arrays
N_Vector N_VMake_**(sunindextype length, sunrealtype* h_data,
                    sunrealtype* d_data, SUNContext ctx)

// Create vector from an existing “unified memory” data array
N_Vector N_VMakeManaged_**(sunindextype length, sunrealtype* uvm_data,
                           SUNContext ctx)

// Create a Kokkos vector using an existing view
sundials::kokkos::Vector<Kokkos::Cuda> y{view, ctx}

▪ Like before, the Sycl vector also takes the queue as an input

▪ Kokkos vectors can also be created from an existing view
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// Access the host or device data pointer
sunrealtype* h_data = N_VGetArrayPointer(y)
sunrealtype* d_data = N_VGetDeviceArrayPointer(y)

// Copy data To or From the device
N_VCopyToDevice_Cuda(y)
N_VCopyFromDevice_Cuda(y)

▪ For the Cuda, Hip, Sycl, Raja, or OpenMPDEV vectors

Accessing and Copying Data with SUNDIALS GPU Vectors

▪ For the Kokkos vector

// Access the host or device view
auto h_view = y.HostView()
auto d_view = y.View()

// Copy data To or From the device
sundials::kokkos::CopyToDevice(y)
sundials::kokkos::CopyFromDevice(y)
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/* Create CUDA vector for the initial condition */
N_Vector y = N_VNew_Cuda(batchSize * nbatches, sunctx);

/* Initialize y on the host (alternatively could initialize on the device) */
double* ydata = N_VGetArrayPointer(y);

for (int batchj = 0; batchj < udata.nbatches; ++batchj)
{
  ydata[batchj * udata.batchSize]     = udata.u0[batchj];
  ydata[batchj * udata.batchSize + 1] = udata.v0[batchj];
  ydata[batchj * udata.batchSize + 2] = udata.w0[batchj];
}

/* Copy data to the device */
N_VCopyToDevice_Cuda(y);

Brusselator Example: Creating the Initial Condition Vector

▪ Alternatively, the vector data can be set by accessing the device pointer and launching a kernel
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▪ For multi-node usage, the MPI+X vector adds MPI capabilities to any local (single-node) vector

— See examples/ida/cuda/idaHeat2D_kry_cuda.cu for an MPI+CUDA example

▪ Include the MPI+X header i.e., #include <nvector/nvector_mpiplusx.h> and construct the MPI+X 

vector from the local vector

The SUNDIALS MPI+X Vector

/* Create the local and global vectors */
N_Vector y_local  = N_VNew_Cuda(local_length, sunctx);

N_Vector y_global = N_VMake_MPIPlusX(mpi_comm, y_local, sunctx);

▪ Accessing the local vector

N_Vector y_local = N_VGetLocalVector_MPIPlusX(y_global);

double* N_VGetDeviceArrayPointer(y_local)

N_VCopyToDevice_Cuda(x) 

▪ Remember to destroy both the local and global vector with N_VDestroy

https://github.com/LLNL/sundials/blob/main/examples/ida/cuda/idaHeat2D_kry_cuda.cu
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▪ With CVODE the initialization function sets

— The user-defined function for evaluating the ODE right-hand side, 𝑓(𝑡, 𝑦)

— The initial condition time, 𝑡0 

— The initial condition state, 𝑦 

— CVODE makes a copy of y so this vector may be reused later for holding the output state

Brusselator Example: Create and Initialize CVODE

/* Create CVODE and specify using Backward Differentiation Formula methods */
void* cvode_mem = CVodeCreate(CV_BDF, sunctx);

/* Initialize the integrator */
retval = CVodeInit(cvode_mem, f, T0, y);
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▪ In MPI problems, communication (e.g., filling ghost cells) takes place inside the RHS function

Brusselator Example: ODE Right-hand Side Function

/* Access the data from the input vectors and launches a CUDA kernel to do the
   actual computation */
int f(double t, N_Vector y, N_Vector ydot, void* user_data)
{
  UserData* udata    = (UserData*)user_data;
  double*   ydata    = N_VGetDeviceArrayPointer(y);
  double*   ydotdata = N_VGetDeviceArrayPointer(ydot);

 unsigned block_size = 256;  
  unsigned grid_size  = (udata->nbatches + block_size - 1) / block_size;

  f_kernel<<<grid_size, block_size>>>(t, ydata, ydotdata, udata->a.get(),
                                udata->b.get(), udata->ep.get(),
                                udata->nbatches, udata->batchSize);
  return 0;
}
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Brusselator Example: ODE Right-hand Side Kernel

__global__ void f_kernel(double t, double* ydata, double* ydotdata,
                         double* A, double* B, double* Ep, int nbatches,
                         int batchSize)
{
  for (int batchj = blockIdx.x * blockDim.x + threadIdx.x; batchj < nbatches;
       batchj += blockDim.x * gridDim.x)
  {
    double a = A[batchj]; double b = B[batchj]; double ep = Ep[batchj];
    double u = ydata[batchj * batchSize];
    double v = ydata[batchj * batchSize + 1];
    double w = ydata[batchj * batchSize + 2];

    ydotdata[batchj * batchSize] = a - (w + 1.0) * u + v * u * u;
    ydotdata[batchj * batchSize + 1] = w * u - v * u * u;
    ydotdata[batchj * batchSize + 2] = (b - w) / ep - w * u;
  }
}
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Brusselator Example: Setting Integrator Tolerances

/* Set the vector absolute tolerance */
double* abstol_data = N_VGetArrayPointer(abstol);

for (int batchj = 0; batchj < udata.nbatches; ++batchj)
{
  abstol_data[batchj * udata.batchSize] = 1.0e-10;
  abstol_data[batchj * udata.batchSize + 1] = 1.0e-10;
  abstol_data[batchj * udata.batchSize + 2] = 1.0e-10;
}

N_VCopyToDevice_Cuda(abstol);

/* Specify the scalar relative tolerance and vector absolute tolerances */
retval = CVodeSVtolerances(cvode_mem, reltol, abstol);

▪ Alternatively, the vector data can be set by accessing the device pointer and launching a kernel

▪ Or we could use a scalar absolute tolerance with CVodeSVtolerances
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▪ SUNDIALS implicit time integrators require solving one or more nonlinear systems of the form 

𝐹 𝑦 = 0 or G 𝑦 = 𝑦 in each time step

▪ SUNDIALS provides several nonlinear solver implementations 

Solving Nonlinear Systems in SUNDIALS Time Integrators

SUNNonlinearSolver

Interface
Fixed-PointNewton PETSc SNES

▪ The Newton and Fixed-Point solvers inherit their GPU capability from the underlying objects 

(vectors, matrices, and linear solvers) and user-supplied callback functions e.g., the ODE RHS

▪ User-defined or problem-specific nonlinear solver modules can be supplied by wrapping the solver 

as a SUNNonlinearSolver implementation

— See examples/arkode/CXX_parallel/ark_brusselator1D_task_local_nls.cpp for an example 

utilizing a problem-specific task-local nonlinear solver on GPUs

https://github.com/LLNL/sundials/blob/develop/examples/arkode/CXX_parallel/ark_brusselator1D_task_local_nls.cpp
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▪ By default, SUNDIALS integrators use a Newton method which requires a linear solver

▪ Users need to create and attach a linear solver object and, if necessary, a matrix object

▪ SUNDIALS provides several GPU-ready linear solver implementations/interfaces

— Iterative: SUNDIALS’ matrix-free iterative (Krylov) linear solvers inherit their GPU capability 

from the vector utilized and user-supplied functions e.g., the ODE RHS, preconditioner, etc.

— Direct: SUNDIALS provides interfaces to linear solver libraries with support for AMD, Intel, and 

NVIDIA GPUs

▪ User-defined or problem-specific linear solver modules can be supplied by wrapping the solver as 

a SUNLinearSolver implementation

— See examples/cvode/CXX_parhyp/cv_heat2D_hypre_ls.cpp for an example wrapping a linear 

solver from the hypre library

Solving Linear Systems in SUNDIALS

https://github.com/LLNL/sundials/blob/develop/examples/cvode/CXX_parhyp/cv_heat2D_hypre_ls.cpp
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▪ Several of the external libraries provide solvers for 

batched systems e.g., the block diagonal systems that 

arise when solving independent systems together

Interfaces to GPU Enabled External Linear Solvers

SuperLU

DIST

SuperLU

MT

Band

KLU

LAPACK 
Dense 

LAPACK 
Band

SuperLU 

DIST

Kokkos 

Kernels

cuSOLVER

MAGMA

Dense

Ginkgo

oneMKL

Dense

SUNLinearSolver 

Interface

▪ All blocks 𝐴𝑗 must be the same size (and have the 

same sparsity pattern with sparse solvers)

▪ Dense blocks 𝐴𝑗

— MAGMA interface supports HIP and CUDA 

— Kokkos Kernels HIP / CUDA / SYCL

— oneMKL interface supports SYCL

▪ Sparse blocks 𝐴𝑗, cuSPARSE interface (CUDA)

▪ Ginkgo for sparse or dense solvers – HIP / CUDA / SYCL

Each of the above linear solvers also has a 

compatible SUNMatrix object e.g., dense, 

MAGMA dense, sparse, Ginkgo, etc.
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▪ Alternatively, this example can also use GMRES to solve the linear systems 

Brusselator Example: Creating and Attaching a Linear Solver Object

/* Create a matrix and linear solver */
SUNMatrix A = SUNMatrix_MagmaDenseBlock(udata.nbatches, udata.batchSize,
                              udata.batchSize, SUNMEMTYPE_DEVICE, 
                                        memhelper, NULL, sunctx);

SUNLinearSolver LS = SUNLinSol_MagmaDense(y, A, sunctx);

/* Attach the matrix and linear solver to CVODE */
retval = CVodeSetLinearSolver(cvode_mem, LS, A);

/* Set the user-supplied Jacobian routine Jac */
retval = CVodeSetJacFn(cvode_mem, Jac);

/* Create and attach GMRES solver (matrix-free) */
SUNLinearSolver LS = SUNLinSol_SPGMR(y, SUN_PREC_NONE, 0, sunctx);

retval = CVodeSetLinearSolver(cvode_mem, LS, NULL);
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Brusselator Example: ODE Jacobian Function

/* Access the data from the input vectors and launch a CUDA kernel to do the    
   actual computation */
int Jac(double t, N_Vector y, N_Vector fy, SUNMatrix J, void* user_data,
        N_Vector tmp1, N_Vector tmp2, N_Vector tmp3)
{
  UserData* udata = (UserData*)user_data;
  double*   Jdata = SUNMatrix_MagmaDense_Data(J);
  double*   ydata = N_VGetDeviceArrayPointer(y);

  unsigned block_size = 32;
  unsigned grid_size  = (udata->nbatches + block_size - 1) / block_size;

  j_kernel<<<grid_size, block_size>>>(ydata, Jdata, udata->a.get(),
                                      udata->b.get(), udata->ep.get(),
                                      udata->nbatches, udata->batchSize);

  return 0;
}
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Brusselator Example: ODE Jacobian Kernel

__global__ void j_kernel(double* ydata, double* Jdata, double* A, double* B, 
                         double* Ep, int nbatches, int batchSize)
{
  int N = batchSize; int NN = N * N;

  for (int batchj = blockIdx.x * blockDim.x + threadIdx.x; batchj < nbatches;
       batchj += blockDim.x * gridDim.x)
  {
 double ep = Ep[batchj];           double u = ydata[N * batchj];
    double v = ydata[N * batchj + 1]; double w = ydata[N * batchj + 2];

    /* first col of block */
    Jdata[NN * batchj] = -(w + 1.0) + 2.0 * u * v;
    Jdata[NN * batchj + 1] = u * u;
    Jdata[NN * batchj + 2] = -u;
    ...
  }
}
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▪ In this example, we attach a “user data” pointer to access problem specific data inside the 

callback functions for computing the right-hand side and Jacobian

Brusselator Example: Optional “Set” Functions

/* Attach a pointer to the user-defined data structure */
retval = CVodeSetUserData(cvode_mem, &udata);

▪ Various other “Set” functions could be called here to adjust the behavior of the integrator or 

enable advanced options

— Modify method or adaptivity options

— Adjust algebraic solver settings

— Enable rootfinding 

— Enable constraint handling

— etc.
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Brusselator Example: Advancing the System in Time

double tout = T0 + dTout;

for (int iout = 0; iout < Nt; iout++)
{
  /* Advance in time and return the solution at tout */
  retval = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
  if (retval < 0) break;

  /* Output some solution components */
  N_VCopyFromDevice_Cuda(y)
  for (int batchj = 0; batchj < udata.nbatches; batchj += 10)
  {
    ...
  }

  tout += dTout;
  tout = (tout > Tf) ? Tf : tout;
}
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▪ Alternatively, CVodePrintAllStats can be used to output all of the integrator stats as well as some 

derived metrics e.g., nonlinear iterations per step, linear iterations per nonlinear, etc.

Brusselator Example: Getting Integrator Statistics

/* Get and print some final statistics */
long int nst, netf, nfe, nsetups, nje, nni, ncfn;

retval = CVodeGetNumSteps(cvode_mem, &nst);

retval = CVodeGetNumErrTestFails(cvode_mem, &netf);

retval = CVodeGetNumRhsEvals(cvode_mem, &nfe);

retval = CVodeGetNumLinSolvSetups(cvode_mem, &nsetups);

retval = CVodeGetNumJacEvals(cvode_mem, &nje);

retval = CVodeGetNumNonlinSolvIters(cvode_mem, &nni);

retval = CVodeGetNumNonlinSolvConvFails(cvode_mem, &ncfn);
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▪ The order in which the objects are freed is not important

▪ Because we used the C++ context class, the object is destroyed when it goes out of scope

Free Integrator and Other Objects

/* Free vectors */
N_VDestroy(y);
N_VDestroy(abstol);

/* Free the matrix */
SUNMatDestroy(A);

/* Free the linear solver */
SUNLinSolFree(LS);

/* Free the integrator */
CVodeFree(&cvode_mem);
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▪ Overview of SUNDIALS (Dan)

▪ How to use the time integrators (Dan)

▪ Using SUNDIALS on GPU-based HPC platforms (David)

➢Brief: How to download and install SUNDIALS (David)

▪ Closing Remarks (Dan)

Tutorial Outline
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▪ Download the tarball from the SUNDIALS website

— computing.llnl.gov/projects/sundials/sundials-software

— Latest (v7.1.1), archived versions, individual packages (e.g., CVODE) available

— Most configurable

▪ Clone from the SUNDIALS GitHub repo

— github.com/LLNL/sundials 

— Also has tarballs of the latest and archived versions available

— Most configurable

▪ Install with Spack 

— spack install sundials

— Latest and recent versions available

— Highly configurable via spack variants e.g., spack install sundials +cuda

Acquiring SUNDIALS

https://computing.llnl.gov/projects/sundials/sundials-software
https://computation.llnl.gov/projects/sundials/sundials-software
https://github.com/LLNL/sundials
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▪ When installing from source, build SUNDIALS with the standard CMake procedure

# clone the SUNDIALS repo
> git clone git@github.com:LLNL/sundials.git
> cd sundials

# create a build directory 
> mkdir build
> cd build

# configure e.g., with MPI and CUDA enabled
> cmake ../. \
  –D CMAKE_INSTALL_PREFIX=<prefix> \
  –D ENABLE_MPI=ON -D ENABLE_CUDA=ON \
  –D CMAKE_CUDA_ARCHITECTURES=80

# build and install
> make –j 8
> make install

Installing SUNDIALS with CMake

▪ See the online documentation for a 

complete list of options

▪ Some common options:

— CMAKE_<lang>_COMPILER the compiler to 

use (default to automatically determine 

from the user environment)

— SUNDIALS_PRECISION the floating-point 

precision to use (default is double)

— SUNDIALS_INDEX_SIZE use 32 or 64-bit 

indexing, must match external solver 

libraries (default is 64-bit)

— BUILD_FORTRAN_MODULE_INTERFACE 
enable the F2003 module interfaces 
(default is OFF)
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▪ Spack (see https://spack.io/) is an easy way to install SUNDIALS

▪ The SUNDIALS team maintains a Spack package that allows installing with one command

spack install sundials

▪ To see the configuration and dependencies Spack will install use the command

spack spec sundials

▪ To see the available Spack “variants” for configuring the install use the command

spack info sundials

▪ SUNDIALS with MPI and CUDA or HIP enabled can be installed with the command:

spack install sundials +mpi +cuda cuda_arch=80 (NVIDIA A100)

spack install sundials +mpi +rocm amdgpu_target=gfx90a (AMD MI250X)

SpackInstalling SUNDIALS with Spack

https://spack.io/
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▪ For CMake projects, SUNDIALS provides a SUNDIALSConfig.cmake configuration file with 

imported targets for each module

Linking to SUNDIALS in an Application Code

# When configuring, set the variable SUNDIALS_DIR to the install location i.e., 
#   cmake -D SUNDIALS_DIR=/path/to/sundials/installation
find_package(SUNDIALS REQUIRED)
add_executable(myexec main.cpp)

# Link to SUNDIALS libraries through the appropriate exported targets
target_link_libraries(myexec PUBLIC SUNDIALS::cvode SUNDIALS::nveccuda)

▪ If using Makefiles files

— Headers are installed in subdirectories under <prefix>/include

— Libraries are installed in <prefix>/lib or <prefix>/lib64

— A list all the installed files is available in the installation guide

▪ With Spack, load SUNDIALS with spack load or get the path with spack location –i
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▪ The online documentation includes an in-depth installation guide: 

— See the “Getting started” section: sundials.readthedocs.io/en/latest/sundials

— The tarballs also have this information in INSTALL_GUIDE.pdf

▪ These include details on configuring with CMake and every possible SUNDIALS CMake option

▪ Users can post queries to GitHub, the sundials-users email list, and check the list archive or FAQ:

— GitHub issues: github.com/LLNL/sundials/issues 

— Mailing list: computing.llnl.gov/projects/sundials/mailing-list  

— List archive: groups.google.com/g/sundials-users 

— FAQ: computing.llnl.gov/projects/sundials/faq

Getting Help with Building and Using SUNDIALS

https://sundials.readthedocs.io/en/latest/sundials/index.html
https://github.com/LLNL/sundials/issues
https://computing.llnl.gov/projects/sundials/mailing-list
https://groups.google.com/g/sundials-users
https://computing.llnl.gov/projects/sundials/faq
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▪ Overview of SUNDIALS (Dan)

▪ How to use the time integrators (Dan)

▪ Using SUNDIALS on GPU-based HPC platforms (David)

▪ Brief: How to download and install SUNDIALS (David)

➢Closing Remarks (Dan)

Tutorial Outline
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▪ Visit the SUNDIALS website
https://computing.llnl.gov/projects/sundials 

▪ SUNDIALS tutorials:  At top of presentations list at the SUNDIALS publications 
page: https://computing.llnl.gov/projects/sundials/publications 

▪ Download from the SUNDIALS website:
https://computing.llnl.gov/projects/sundials/sundials-software 

▪ Download the tarball from the SUNDIALS GitHub page: 
https://github.com/LLNL/sundials/releases

▪ Install SUNDIALS using Spack   “spack install sundials”

▪ View online documentation on all SUNDIALS packages at readthedocs.org: 
https://sundials.readthedocs.io 

Where to learn more and get the software

https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials/publications
https://computing.llnl.gov/projects/sundials/sundials-software
https://github.com/LLNL/sundials/releases
https://sundials.readthedocs.io/
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▪ Visit the SUNDIALS Documentation: https://sundials.readthedocs.io

▪ Visit the SUNDIALS GitHub: https://github.com/LLNL/sundials 

▪ Visit the SUNDIALS website at LLNL: https://computing.llnl.gov/projects/sundials 

▪ Where to get this tutorial: SUNDIALS Publications page (bottom), 

https://computing.llnl.gov/projects/sundials/publications 

• This page also includes prior tutorials on the basic uses of SUNDIALS

Where to learn more

https://sundials.readthedocs.io/en/latest/
https://github.com/LLNL/sundials
https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials/publications


sundials.readthedocs.io

github.com/LLNL/sundials

computing.llnl.gov/sundials
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The SUNDIALS ManyVector NVector module

▪ A mechanism for users to partition their 

simulation data among disparate 

computational resources

— E.g., CPUs and GPUs

▪ Does not touch any vector data directly, 
instead it is a software layer to treat a 

collection of other NVector objects as a 

single cohesive NVector

▪ Can be used to easily partition data within 

a node or across nodes

▪ Also can be used to combine distinct MPI 

intracommunicators together into a multi-

physics simulation

Figure 2, ManyVector use case for process-

based multiphysics decompositions, wherein 

Comm1 connects processes 0 and 1 with 

physics operating on red/blue data, Comm2 

connects processes 2 and 3 with physics 

operating on green/magenta data, and an MPI 
intercommunicator allows multiphysics coupling.

Figure 1, ManyVector use case for 

multi-rate or data partitioning, 

allowing for each vector to utilize 

distinct processing elements within 

the same node (e.g. red/blue on CPU 

and green/magenta on GPU) or for 

collective communications to be 

combined to minimize latency 

overhead (e.g., during Gram-Schmidt 

orthogonalization within linear or 

nonlinear solvers).
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▪ If MPI is needed, include nvector_mpimanyvector.h, otherwise include nvector_manyvector.h

▪ Constructors take an array of other NVector objects:

▪ After construction, the ManyVector behaves like a single cohesive vector with data ordered according to 
the ordering of the subvectors in the vector array:

Using the ManyVector
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▪ The N_VGetSubvector_[MPI]ManyVector function can be called to access the the subvectors after 

construction of the ManyVector

▪ N_VGetSubvectorArrayPointer_[MPI]ManyVector and N_VSetSubvectorArrayPointer_[MPI]ManyVector are 

available convenience functions for accessing the data of a subvector, but note that not all subvectors 
may have data that is directly accessible (e.g. the CUDA NVector when using device memory)

▪ Note: calling N_VDestroy on the ManyVector object does not destroy the subvectors!

— Need to destroy each subvector, then free the ManyVector:

Using the ManyVector
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ManyVector Performance Results

▪ Developed a scalable multiphysics demonstration 

code using the new many-vector module, fused 

vector operations, and a third order explicit-

implicit multirate integrator

▪ Observed 90% weak scaling efficiency using 40 
MPI ranks on each of 2 to 3,456 nodes of OLCF 

Summit (80 to 138,240 CPU cores)

𝜕𝒘

𝜕𝑡
= −∇ ∙ 𝑭 𝒘 + 𝑹 𝒘 + 𝑮(𝒙, 𝑡)

𝜌 𝑚𝑦 𝑚𝑧𝜌 𝑚𝑥 𝑒𝑡𝑒𝑡𝑚𝑥 𝜌 𝑚𝑧𝑚𝑦 𝑚𝑧 𝑚𝑥𝑒𝑡 𝑚𝑦

𝒄𝒄𝒄

𝒘 𝒘 𝒘

Task 0 Task 1 Task 2
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▪ Fused vector operations increase computation per vector operation

▪ Are particularly interesting when using GPUs because the CUDA kernel launch overhead associated with 

an operation is high

▪ The NVector API defines 9 fused vector operations

— Can be enabled/disabled for vectors at runtime
— Can be enabled/disable individually or together

▪ Note: Fused operations should be enabled/disabled prior to attaching the vector to an integrator:

Enabling Fused Vector Operations



84Center for Advanced Computation, PPPL, Sept. 25, 2024

▪ The HIP, SYCL, and CUDA vectors support attaching ExecPolicy objects for determining kernel 

launch parameters, setting GPU streams, and selecting reduction algorithms (HIP and CUDA only)

▪ Setting a GPU stream enables concurrent kernel execution (beneficial when running multiple 

integrator instances) and the reduction algorithm is critical depending on hardware capabilities

▪ SUNDIALS provided hip, sycl, and cuda (** below) class implementations

Creating and Attaching GPU Execution Policies to Vectors

// Set the execution policies for steaming and reduction operations
int N_VSetKernelExecPolicy_**(N_Vector v, sundials::**::ExecPolicy stream_exec,
                              sundials::**::ExecPolicy reduce_exec);

ThreadDirectExecPolicy(blockDim, stream) One thread per work unit

GridStrideExecPolicy(blockDim, gridDim, stream) Fixed grid and block size

BlockReduceAtomicExecPolicy(blockDim, gridDim, stream) Block reduce with atomics

BlockReduceExecPolicy(blockDim, gridDim, stream) Block reduce with shared memory
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Using Multiple CVODE Instances with OpenMP and GPU Streams

▪ Consider same Robertson example where the larger group of independent systems is divided 

across multiple CVODE instances each associated with an OpenMP thread and GPU stream

▪ The use of OpenMP threads and GPU streams enables concurrent kernel execution which is 

beneficial when different groupings of systems require differing amounts of work

▪ We now need to create arrays of objects and potentially adjust the kernel launch parameters 

otherwise, the steps are largely the same as in the non-OpenMP case.
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Creating SUNDIALS Vector, Matrix, and Solver Objects

int main(int argc, char* argv[])
{
  // Read input parameters and determined the problem size per thread...

  SUNContext sunctx[num_threads];
  // Arrays of other SUNDIALS objects...

  for (int i = 0; i < num_threads; i++)
  {
    hipStreamCreate(&stream[i]);                                        // Create GPU streams
    retval    = SUNContext_Create(NULL, &sunctx[i]);                    // Create the SUNDIALS contexts
    helper[i] = SUNMemoryHelper_Hip(sunctx[i]); // SUNDIALS HIP Memory Allocator
    y[i]      = N_Vnew_Hip(neq_per_thread, sunctx[i]);                  // Create the vector and exec policy

    SUNHipExecPolicy* stream_exec = new SUNHipGridStrideExecPolicy(threads_per_block, blocks_per_grid,
stream[i]);

    SUNHipExecPolicy* reduce_exec = new SUNHipBlockReduceExecPolicy(threads_per_block, blocks_per_grid,
stream[i]);

    retval = N_VSetKernelExecPolicy_Hip(y, stream_exec, reduce_exec);
    delete stream_exec; delete reduce_exec;

    A[i] = SUNMatrix_MagmaDenseBlock(ngroups_per_thread, GROUPSIZE, GROUPSIZE, // Create MAGMA SUNMatrix
                                     SUNMEMTYPE_DEVICE, helper[i], stream[i], sunctx[i]);

    LS[i] = SUNLinSol_MagmaDense(y[i], A[i], sunctx[i]);                // Create MAGMA SUNLinearSolver object
  }
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Create, Initialize, and Configure CVODE then Evolve in Time

#pragma omp parallel for
  for (int i = 0; i < total_num_groups; i++)
  { 
    int tid = omp_get_thread_num();                       // Get the thread ID

    retval = FillInitialCondition(y[tid]);                // Set the initial condition

    if (!cvode_initialized[tid])                          // Initialize and configure CVODE if not done yet
    {
      retval = CVodeInit(cvode_mem[tid], f, t0, y[tid]);
      cvode_initialized[tid] = 1;
      // Configure CVODE...
    }
    else
    {
      retval = CVodeReInit(cvode_mem[tid], t0, y[tid]);   // Reinitialize CVODE to evolve a new group
    }
    
    for (int iout = 0; iout < NOUT; iout++)
    {
      retval = CVode(cvode_mem[tid], tout, y[tid], &tret, CV_NORMAL); 

      // Output solution and update output time...
    }
    // Output integrator statistics...
  }
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